
A guide to techno-galactic software
observation

I am less interested in the critical practice of reflection,

of showing once-again that the emperor has no

clothes, than in finding a way to diffract critical inquiry

in order to make difference patterns in a more worldly

way. 1

The techno-galactic software survival guide that you are

holding right now was collectively produced as an outcome

of the Techno-Galactic Software Observatory. This guide

proposes several ways to achieve critical distance from

the seemingly endless software systems that surround

us. It offers practical and fantastical tools for the tactical

(mis)use of software, empowering/enabling users to resist

embedded paradigms and assumptions. It is a collection of

methods for approaching software, experiencing its myths

and realities, its risks and benefits.

With the rise of online services, the use of software has

increasingly been knitted into the production of software,

even while the rhetoric, rights, and procedures continue

to suggest that use and production constitute separate

1 Haraway, Donna: “Modest Witness: Feminist Diffractions in Science
Studies”. In: Galison, Peter/Stump, David J. (eds.): The Disunity of
Science: Boundaries, Contexts, and Power. 1996, 428–442.

1

realms. This knitting together and its corresponding dis-

avowal have an effect on the way software is used and

produced, and radically alters its operative role in society.

The shifts ripple across galaxies, through social structures,

working conditions and personal relations, resulting in a

profusion of apparatuses aspiring to be seamless while

optimizing and monetizing individual and collective flows

of information in line with the interests of a handful of ac-

tors. The diffusion of software services affects the per-

sonal, in the form of intensified identity shaping and self-

management. It also affects the public, as more and more

libraries, universities and public infrastructures as well as

the management of public life rely on “solutions” provided

by private companies. Centralizing data flows in the clouds,

services blur the last traces of the thin line that separates

bio- from necro-politics.

Given how fast these changes resonate and reproduce,

there is a growing urgency to engage in a critique of soft-

ware that goes beyond taking a distance, and that deals

with the fact that we are inevitably already entangled. How

can we interact, intervene, respond and think with soft-

ware? What approaches can allow us to recognize the

agency of different actors, their ways of functioning and

their politics? What methods of observation enable critical

inquiry and affirmative discord? What techniques can we

2

apply to resurface software where it has melted into the

infrastructure and into the everyday? How can we remem-

ber that software is always at work, especially where it is

designed to disappear into the background?

We adopted the term of observation for a number of rea-

sons. We regard observation as a way to approach soft-

ware, as one way to organize engagement with its im-

plications. Observation, and the enabling of observation

through intensive data-centric feedback mechanisms, is

part of the cybernetic principles that underpin present day

software production. Our aim was to scrutinize this method-

ology in its many manifestations, including in “observato-

ries” – high cost infrastructures [testing infrastructures?

of observation troubled by colonial, imperial traditions and

their problematic divisions of nature and culture – with the

hope of opening up questions about who gets to observe

software (and how) and who is being observed by software

(and with what impact)? It is a question of power, one that

we answer, at least in part, with critical play.

We adopted the term techno-galactic to match the adver-

tised capability of “scaling up to the universe” that comes in

contemporary paradigms of computation, and to address

different scales of software communities and related politi-

cal economies that involve and require observation.

3

Drawing on theories of software and computation devel-

oped in academia and elsewhere, we grounded our meth-

ods in hands-on exercises and experiments that you now

can try at home. This Guide to Techno-Galactic Software

Observation offers methods developed in and inspired by

the context of software production, hacker culture, software

studies, computer science research, Free Software com-

munities, privacy activism, and artistic practice. It invites

you to experiment with ways to stay with the trouble of

software.

4

The Techno-Galactic Software Observatory

In the summer of 2017, around thirty people gathered in

Brussels to explore practices of proximate critique with

and of software in the context of a worksession entitled

“Techno-Galactic Software Observatory”. 2 The workses-

sion called for software-curious people of all kinds to ask

questions about software. The intuition behind such a call

was that different types of engagement requires a hetero-

geneous group of participants with different levels of ex-

pertise, skill and background. During three sessions of

two days, participants collectively inspected the space-

time of computation and probed the universe of hardware-

software separations through excursions, exercises and

conversations. They tried out various perspectives and

methods to look at the larger picture of software as a con-

cept, as a practice, and as a set of techniques.

The first two days of The Techno-Galactic Software Ob-

servatory included visits to the Muse de l’Informatique Pi-

onnire en Belgique 3 in Namur and the Computermuseum

2 Worksessions are intensive transdisciplinary moments, organised twice
a year by Constant. They aim to provide conditions for participants with
different experiences and capabilities to temporarily link their practice
and to develop ideas, prototypes and research projects together. For
the worksessions, primarily Free, Libre and Open Source software is
used and material that is available under ???

3 http://www.nam-ip.be

5

KULeuven 4. In the surroundings of these collections of his-

torical ’numerical artefacts’, we started viewing software

in a long-term context. It offered us the occasion to re-

flect on the conditions of its appearance, and allowed us

to take on current-day questions from a genealogical per-

spective. What is software? How did it appear as a con-

cept, in what industrial and governmental circumstances?

What happens to the material conditions of its production

(minerals, factory labor, hardware) when it evaporates into

a cloud?

The second two days we focused on the space-time di-

mension of IT development. The way computer programs

and operating systems are manufactured changed tremen-

dously through time, and so did its production times and

places. From military labs via the mega-corporation cubi-

cles to the open-space freelancer utopia, what ruptures

and continuities can be traced in the production, deploy-

ment, maintenance and destruction of software? From time-

sharing to user-space partitions and containerization, what

separations were and are at work? Where and when is

software made today?

4 http://www.etwie.be/database/actor/computermuseum-ku-leuven

6

The Walk-in Clinic

The last two days at the Techno-galactic software observa-

tory were dedicated to observation and its consequences.

The development of software encompasses a series of

practices whose evocative names are increasingly famil-

iar: feedback, report, probe, audit, inspect, scan, diagnose,

explore, test . . . What are the systems of knowledge and

power within which these activities take place, and what

other types of observation are possible? As a practical set

for our investigations, we set up a walk-in clinic on the 25th

floor of the World Trade Center, where users and develop-

ers could arrive with software-questions of all kinds.

Do you suffer from the disappearance of your

software into the cloud, feel oppressed by unequal

user privilege, or experience the torment of

software-ransom of any sort? Bring your devices and

interfaces to the World Trade Center! With the help of

a clear and in-depth session, at the Techno-Galactic

Walk-In Clinic we guarantee immediate results. The

Walk-In Clinic provides free hands-on observations to

software curious people of all kinds. A wide range of

professional and amateur practitioners will provide

you with Software-as-a-Critique-as-a-Service on the

spot. Available services range from immediate

7

interface critique, collaborative code inspection, data

dowsing, various forms of network analyses,

unusability testing, identification of unknown viruses,

risk assessment, opening of black-boxes and more.

Free software observations provided. Last intake at

16:45.

(invitation to the Walk-In Clinic, June 2017)

On the following pages: Software as a Critique as a Ser-

vice (SaaCaaS) Directory and intake forms for Software

Curious People (SCP).

8

Technogalactic Software Observation
Essentials

WARNING

The survival techniques described in the following guide

are to be used at your own risk in case of emergency re-

garding software curiosity. The publisher will not accept

any responsability in case of damages caused by misuse,

misundestanding of instruction or lack of curiosity. By try-

ing the action exposed in the guide, you accept the respon-

sability of loosing data or altering hardware, including hard

disks, usb key, cloud storage, screens by throwing them

on the floor, or even when falling on the floor with your

laptop by tangling your feet in an entanglement of cables.

No harm has been done to human, animal, computers or

plants while creating the guide. No firearms or any kind of

weapon is needed in order to survive software.

Just a little bit of patience.

Software observation survival stresses

Physical fitness plays a great part of software obser-

vation. Be fit or CTRL-Quit.

When trying to observe software you might experience

stresses as such :

AnxietySleep deprivation Forgetting about eatingLoss of

time tracking

9

Can you cope with software ? You have to.

our methods for observation, like mapping, come with

their luggage.

10

Close encounters

12

Method: Encounter several collections of historical hard-

ware back-to-back

How:

This can be done by identifying one or more computer

museums and visit them with little time in-between. Vis-

iting a friend with a large basement and lots of left-over

computer equipment can help. Seeing and possibly touch-

ing hardware from different contexts (state-administration,

business, research, . . .), periods of time, cultural contexts

(California, Germany, French-speaking Belgium) and price

ranges allows you to sense the interactions between hard-

ware and software development.

Note: It’s a perfect way to hear people speak about the

objects and their contexts, how they worked or not and

how objects are linked one with another. It also shows the

economic and cultural aspects of softwares.

Warning: DO NOT FOLD, SPINDLE OR MUTILATE

Example: Spaghetti Suitcase

At one point during the demonstration of a Bull computer,

the guide revealed the system’s “software” – a suitcase

sized module with dozens of patch cords. She made the

comment that the term “spaghetti code” (a derogatory ex-

pression about early code usign many “GOTO” statments)

13

had its origin in this physical arrangement of code as patch-

ings.

Preserving old hardware in order to observe physical man-

ifestation of software. See software here : we did experi-

enced the incredible possibility of actually touching soft-

ware.

Example: Playing with the binary. Bull cards. Happy oper-

ator! Punch card plays.

“The highlight of the collection is to revive a real punch card

workshop of the 1960s.”

Example: Collection de la Maison des critures d’Informatique

& Bible, Maredsous

The particularity of the collection lies in the fact that it’s

the conservation of multiple stages of life of a software

since its initial computerization until today. The idea of

introducing informatics into the work of working with/on

the Bible (versions in Hebrew, Greek, Latin, and French)

dates back to 1971, via punch card recordings and their

memorization on magnetic tape. Then came the step of

analyzing texts using computers.

14

Method: Interview people about their histories with soft-

ware

What: Observe personnal narratives around software his-

tory. Retrace the path of relation to software, how it changed

during the years and what are the human access memo-

ries that surrounds it. To look at software through personal

relations and emotions.

How: Interviews are a good way to do it. Informal conver-

sations also.

Jean Heuns has been collecting servers, calculators, soft-

wares, magnetic tapes hard disks for xxx years. Found

an agreement for them to be displayed in the department

hallways. Department of Computer sciences - Kul Leuven.

15

Method: Ask several people from different fields and age-

groups the same question: “What is software?”

Remember: The answers to this question will vary de-

pending on who is asking it to who.

What: By paying close attention to the answers, and pos-

sibly logging them, observations on the ambiguous place

and nature of software can be made.

Example:

Jean Huens (system administrator at the department of

Computer Science, KULeuven): “It is difficult to answer

the question ‘what is software’, but I know what is good

software”

Thomas Cnudde (hardware designer at ESAT - COSIC,

Computer Security and Industrial Cryptography, KULeu-

ven): “Software is a list of sequential instructions! Hard-

ware for me is made of silicon, software a sequence of

bits in a file. But naturally I am biased: I’m a hardware

designer so I like to consider it as unique and special”.

Amal Mahious (Director of NAM-IP, Namur): “This, you

have to ask the specialists.”

*what is software?
--the unix filesystem says: it’s a file----what is a file?
----in the filesystem, if you ask xxd:
------ it’s a set of hexadecimal bytes
-------what is hexadecimal bytes?

16

------ -b it’s a set of binary 01s
----if you ask objdump
-------it’s a set of instructions
--side channel researching also says:
----it’s a set of instructions
--the computer glossary says:
----it’s a computer’s programs, plus the procedure for their use http://etherbox.local/home/pi/video/A˙Computer˙Glossary.webm#t=02:26
------ a computer’s programs is a set of instrutions for perform-
ing computer operations

Remember: To answer the question “what is software” de-

pends on the situation, goal, time, and other contextual

influences.

17

Method: FMEM and /DEV/MEM

What: Different ways of exploring your memory (RAM).

Because in unix everything is a file, you can access your

memory as if it were a file.

Urgency: To try and observe the operational level of soft-

ware, getting closer to the workings, the instruction-being

of an executable/executing file, the way it is when it is

loaded into memory rather than when it sits in the harddisk

Remember: In Unix-like operating systems, a device file

or special file is an interface for a device driver that ap-

pears in a file system as if it were an ordinary file. In the

early days you could fully access your memory via the

memory device (1) but over time the access was more

and more restricted in order to avoid malicious processes

to directly access the kernel memory. The kernel option

CONFIG STRICT DEVMEM was introduced in kernel ver-

sion 2.6 and upper (2.6.36–2.6.39, 3.0–3.8, 3.8+HEAD).

So you’ll need to use the Linux kernel module fmem: this

module creates 1 device, that can be used for accessing

physical memory without the limits of /dev/mem (1MB/1GB,

depending on distribution).

1 tools to explore processes stored in the memory

ps ax | grep process
cd /proc/numberoftheprocess
cat maps

18

–> check what it is using

The proc filesystem is a pseudo-filesystem which provides

an interface to kernel data structures. It is commonly mounted

at 1. Most of it is read-only, but some files allow kernel vari-

ables to be changed.

dump to a file–>change something in the file–>dump new

to a file–>diff oldfile newfile

“where am i?”

to find read/write memory addresses of a certain process

take the range and drop it to hexdump

sudo dd if=/dev/mem bs=1 skip=$((16#b7526000− 1)) \
count=$((16#b7528000− 16#7b7526000 + 1)) | hexdump−C

Besides opening the memory dump with an hex editor you

can also try and explore it with other tools or devices. You

can open it as a raw image, you can play it as a sound or

perhaps send it directly to your frame-buffer device (1).

Warning: Although your memory may look like/sound like/read

like gibberish, it may contain sensitive information about

you and your computer!

Example:

19

Method: Pan/Monopsychism

What: Reading and writing sectors of memory from/to dif-

ferent computers

How: Shell commands and fmem kernel module

Urgency: Memory, even when it is volatile, is a trace of

the processes happening in your computer in the form of

saved information, and is therefore more similar to a file

than to a process. Challenging the file/process divide, shar-

ing memory with others will allow a more intimate relation

with your and other’s computers.

About: Monopsychism is the philosophical/theological doc-

trine according to which there exists but one intellect/soul,

shared by all beings.

Note: The parallel allocation and observation of the same

memory sector in two different computers is in a sense

the opposite process of machine virtualization, where the

localization of multiple virtual machines in one physical

comptuers can only happen by rigidly separating the mem-

ory sectors dedicated to the different virtual machines.

Warning: THIS METHOD HAS NOT BEEN TESTED, IT

CAN PROBABLY DAMAGE YOUR RAM MEMORY AND/OR

COMPUTER

First start the fmem kernel module in both computers:

20

Then load part of your computer memory into the other

computer via dd and ssh:

Or viceversa, load part of another computer’s memory into

yours:

Or even, exchange memory between two other computers:

pan/monopsychism:
(aquinas famously opposed averroes..who’s philosophy can be in-
terpreted as monopsychist)

shared memory

copying the same memory to different computers

https://en.wikipedia.org/wiki/Reflection˙%28computer˙programming%29

it could cut through the memory like a worm

or it could go through the memory of different computers one af-
ter the other and take and leave something there

21

Temporality

22

Method: Fountain refreshment

What: Augmenting a piece of standardised office equip-

ment designed to dispense water to perform a decorative

function.

How: Rearranging space as conditioning observations

(WTC vs. Museum vs. University vs. Startup Office vs. Shift-

ing Walls that became Water Fountains)

Who: Gaining access to standardised water dispensing

equipment turned out to be more difficult than expected as

such equipment is typically licensed / rented rather than

purchased outright. Acquiring a unit that could be modified

required access to secondary markets of second hand

office equiment in order to purchase a disused model.

Urgency: EU-OSHA (European Agency for Safety and

Health at Work) Directive 2003/10/EC noise places de-

scribes the minimum health and safety requirements re-

garding the exposure of workers to the risks arising from

physical agents (noise). However no current European

guidelines exist on the potential benefitial uses of tactially

designed additive noise systems.

The Technogalactic Software Observatory – Comfortable

silence, one way mirrors

A drinking fountain and screens of one-way mirrors as part

of the work session “The Technogalactic Software Obser-

vatory” organised by Constant.

23

For the past 100 years the western ideal of a corporate

landscape has been has been moving like a pendulum,

oscillating between grids of cubicles and organic, open

landscapes, in a near to perfect 25-year rhythm. These

days the changes in office organisation is supplemented

by sound design, in corporate settings mostly to create

comfortable silence. Increase the sound and the space be-

comes more intimate, the person on the table next to you

can not immediately hear what you are saying. It seems

that actual silence in public and corporate spaces has not

been sought after since the start of the 20th century. Ac-

tual silence is not at the moment considered comfortable.

One of the visible symptoms of our desire to take the edge

off the silence is to be observed through the appearance

of fountains in public space. The fountains purpose be-

ing to give off neutral sound, like white noise without the

negative connotations. However as a sound engineer’s

definition of noise is unwanted sound that all depends on

ones personal relation to the sound of dripping water.

This means that there needs to be a consistent inoffen-

siveness to create comfortable silence.

In corporate architecture the arrival of glass buildings were

originally seen as a symbol of transparency, especially

loved by governmental buildings. Yet the reflectiveness

of this shiny surface once combined with strong light –

24

known as the treason of the glass – was only completely

embraced at the invention of one-way-mirror foil. And it

was the corporate business-world that would come to be

known for their reflective glass skyscrapers. As the foil re-

acts to light, it appears transparent to someone standing

in the dark, while leaving the side with the most light with

an opaque surface. Using this foil as room dividers in a

room with a changing light, what is hidden or visible will

vary throughout the day. So will the need for comfortable

silence. Disclaimer :

Similar to the last 100 years of western office organisation,

this fountain only has two modes:

on or off

If it is on it also offers two options

cold water and hot water

This fountain has been tampered with and has not in any

way been approved by a proffesional fountain cleaner. I do

urge you to consider this before you take the decision to

drink from the fountain.

Should you chose to drink from the fountain, then I urge

you to write your name on your cup, in the designated area,

for a customised experience of my care for you.

I do want you to be comfortable.

25

Method: Create “nannyware”: Software that observes and

addresses the user

What:

Nannyware is software meant to protect users while limit-

ing their space of activity. It is software that passive-aggressively

suggests or enforces some kind of discipline. In other

words, create a form of parental control extended to adults

by means of user experience / user interfaces.

Nannyware is a form of Content-control software: software

designed to restrict or control the content a reader is au-

thorised to access, especially when utilised to restrict ma-

terial delivered over the Internet via the Web, e-mail, or

other means. Content-control software determines what

content will be available or be blocked.

How:

[. . . Restrictions can be applied at various levels: a

government can attempt to apply them nationwide

(see Internet censorship), or they can, for example,

be applied by an ISP to its clients, by an employer to

its personnel, by a school to its students, by a library

to its visitors, by a parent to a child’s computer, or by

an individual user to his or her own computer. 5

5 C O N T E N T- C O N T R O L S O F T WA R E — W I K I P E D I A , T H E F R E E
E N C Y C L O P E D I A. Wikipedia contributors, 2018.

26

Who:

Unlike filtering, accountability software simply reports

on Internet usage. No blocking occurs. In setting it

up, you decide who will receive the detailed report of

the computer’s usage. Web sites that are deemed

inappropriate, based on the options you’ve chosen,

will be red-flagged. Because monitoring software is of

value only “after the fact”, we do not recommend this

as a solution for families with children. However, it

can be an effective aid in personal accountability for

adults. There are several available products out

there. 6

Urgency:

As with all new lifestyle technologies that come

along, in the beginning there is also some chaos until

their impact can be assessed and rules put in place

to bring order and respect to their implementation

and use in society. When the automobile first came

into being there was much confusion regarding who

had the right of way, the horse or the car. There were

no paved roads, speed limits, stop signs, or any other

traffic rules. Many lives were lost and much property

6 S A F E FA M I L I E S . O R G — AC C O U N TA B I L I T Y S O F T WA R E :
E N C Y C L O P E D I A O F U R B A N M I N I S T RY. TechMission
UrbanMinistry.org, 2018.

27

was destroyed as a result. Over time, government

and society developed written and unwritten rules as

to the proper use of the car. 7

Warning:

Disadvantages of explicit proxy deployment include a

user’s ability to alter an individual client configuration

and bypass the proxy. To counter this, you can

configure the firewall to allow client traffic to proceed

only through the proxy. Note that this type of firewall

blocking may result in some applications not working

properly. 8

Example:

The main problem here is that the settings that are

required are different from person to person. For

example, I use workrave with a 25 second

micropause every two and a half minute, and a 10

minute restbreak every 20 minutes. I need these

frequent breaks, because I’m recovering from RSI.

And as I recover, I change the settings to fewer

breaks. If you have never had any problem at all

(using the computer, that is), then you may want

7 P R O T E C T I N G YO U R FA M I LY. Inc. Content Watch Holdings, 2018.
8 E X P L I C I T A N D T R A N S PA R E N T P R OX Y D E P L OY M E N T S.

websense.com, 2012.

28

much fewer breaks, say 10 seconds micropause

every 10 minutes, and a 5 minute restbreak every

hour. It is very hard to give proper guidelines here.

My best advice is to play around and see what works

for you. Which settings “feel right”. Basically, that’s

how Workrave’s defaults evolve. 9

Facebook is working on an app to stop you from drunk-

posting “Yann LeCun, who overseas the lab, told Wired

magazine that the program would be like someone asking

you, ‘Uh, this is being posted publicly. Are you sure you

want your boss and your mother to see this?’ ”

9 F R E Q U E N T LY A S K E D Q U E S T I O N S. workrave.org, 2018.

29

Method: Useless scroll against productivity

30

Method: Investigating how humans and machines negoti-

ate the experience of time

What:

How: python script

Example:

ends of time

https://en.wikipedia.org/wiki/Year˙2038˙problem

Exact moment of the epoch:
03:14:07 UTC on 19 January 2038

commands

local UNIX time of this machine
%XBASHCODE: date +%s

UNIX time + 1
%BASHCODE: echo $((‘date +%s‘ +1))

goodbye unix time

while :
do
sleep 1
figlet $((2147483647 - ‘date +%s‘))

done

Sundial Time Protocol Group tweaks

printf ’Current Time in Millennium Unix Time: ’
printf $((2147483647 - ‘date +%s‘))
echo
sleep 2

31

echo $((‘cat ends-of-times/idletime‘ + 2)) ¿ ends-of-
times/idletime

idletime=‘cat ends-of-times/idletime‘
echo
figlet ”Thank you for having donated 2 seconds to our $idle-

time seconds of collective SSH pause ”
echo
echo

http://observatory.constantvzw.org/etherdump/ends-of-time.html

32

Languaging

34

Method: Quine

What: A program whose function consists of displaying its

own code. Also known as “self-replicating program”

Why: Quines show the tension between “software as lan-

guage” and “software as operation”.

How: By running a quine you will get your code back.

You may do a step forward and wonder about function-

ality and aesthetics, uselessness and performativity, data

and code.

Example: A quine (Python). When executed it outputs the

same text as the source:

[] s = ’s = print(s

Example: A oneline unibash/etherpad quine, created dur-

ing relearn 2017:

wget -qO- http://192.168.73.188:9001/p/quine/export/txt — curl -
F ”file=@-;type=text/plain” http://192.168.73.188:9001/p/quine/import

Warning:

The encounter with quines may deeply affect you. You may

want to write one and get lost in trying to make an ever

shorter and more elegant one. You may also take quines

as point of departure or limit-ideas for exploring software

dualisms.

35

“A quine is without why. It prints because it prints. It pays

no attention to itself, nor does it asks whether anyone sees

it.” “Aquine is aquine is aquine.” Aquine is not a quine This

is not aquine

Remember: Although seemingly absolutely useless, quines

can be used as exploits.

Exploring boundaries/tensions

databases treat their content as data (database punctual-

ization) some exploits manage to include operations in a

database

36

Method: Glossaries as an exercise

What: Use the technique of psychanalytic listening to com-

pile (gather, collect, bring together) a list of key words for

understanding software.

How: Create a shared document that participants can add

words to as their importance emerges.To do pyschoana-

lytic listening, let your attention float freely, hovering evenly,

over a conversation or a text until something catches its

ear. Write down what your ear/eye catches. When working

in a collective context invite others to participate in this

project and describe the practice to them. Each individual

may move in and out of this mode of listening according

to their interest and desire and may add as many words

to the list as they want. Use this list to create an index of

software observation.

When: This is best done in a bounded context. In the case

of the Techno-Galactic Observatory, our bounded contexts

includes the six day work session and the pages and pro-

cess of this publication.

Who: The so-inclined within the group

Urgency: Creating and troubling categories

Note: Do not remove someone else’s word from the glos-

sary during the accumulation phase. If an editing and cut-

ting phase is desired this should be done after the collec-

tion through collective consensus.

37

Warning: This method is not exclusive to and was not

developed for software observation. It may lead to aware-

ness of unconscious processes and to shifts in structures

of feeling and relation.

Example:

Code
Colonial
Command Line
Connectivity
Emotional
Galaxies
Green
Guide
Kernel
Imperial
Issues
Machine
Memory
Museum
Observation
ProductionPower
Relational
Red
Scripting
Software
Survival
Technology
Test
Warning

38

Method: Adding qualifiers

Remember: “[V]alues are properties of things and states

of affairs that we care about and strive to attain. . . vlaues

expressed in technical systems are a function of their uses

as well as their features and designs.” Values at Play in

Digital Games, Mary Flanagan and Helen Nissenbaum

What: Bringing a moral, ethical, or otherwise evaluative/ad-

jectival/validating lens.

How: Adjectives create subcategories. They narrow the

focus by naming more specifically the imagined object at

hand and by implicitly excluding all objects that do not

meet the criteria of the qualifier. The more adjectives that

are added, the easier it becomes to answer the question

what is software. Or so it seems. Consider what happens

if you add the words good, bad, bourgeois, queer, stable,

or expensive to software. Now make a list of adjectives

and try it for yourself. Level two of this exercise consists of

observing a software application and deducing from this

the values of the individuals, companies, and societies that

produced it.

Note: A qualifier may narrow down definitions to undesir-

able degrees.

Warning: This exercise may be more effective at identify-

ing normative and ideological assumptions at play in the

39

making, distributing, using, and maintaining of software

than at producing a concise definition.

Example: “This morning, Jan had difficulties to answer

the question”what is software“, but he said that he could

answer the question”what is good software”. What is good

software?

40

Method: Searching “software” through software

What: A quick way to sense the ambiguity of the term

‘software’, is to go through the manual files on your hard

drive and observe in which cases is the term used.

How: command-line oneliner

Why: Software is a polymorphic term that take different

meanings and comes with different assumptions for the

different agents involved in its production, usage and all

other forms of encounter and subjection. From the situ-

ated point of view of the software present on your machine,

when and why does software call itself as such?

Example:

so software exists only outside your computer? only in

general terms? checking for the word software in all man

pages:

grep -nr software /usr/local/man
!!!!

software appears only in terms of license:

This program is free software
This software is copyright (c)

we don’t run software. we still run programs.

nevertheless software is everywhere

41

Method: Persist in calling everyone a Software Curious

Person

What: Persistance in naming is a method for changing a

person’s relationship to software by (sometimes forcibly)

call everyone a Software Curious Person.

How: Insisting on curiosity as a relation, rather than for

example ‘fear’ or ‘admiration’ might help cut down the bar-

riers between different types of expertise and allows multi-

ple stakeholders feel entitled to ask questions, to engage,

to investigate and to observe.

Urgency: Software is too important to not be curious about.

Observations could benefit from recognising different forms

of knowledge. It seems important to engage with software

through multiple interests, not only by means of technical

expertise.

Example: This method was used to address each of the

visitors at the Technogalactic Walk-in Clinic.

42

Healing

44

Method: Setup a Relational software observatory consul-

tancy (RSOC)

Remember:

• Collectivise research around hacking to save time.

• Self-articulate software needs as your own Operating

(system) perspective.

• Change the lens by looking to software through a

time perspective.

What: By paying a visit to our ethnomethodology interview

practice you’ll learn to observe software from different an-

gles / perspectives. Our practionners passion is to make

the “what is the relation to software” discussion into a ser-

vice.

How: Reading the signs. Considering the everchanging

nature of software development and use and its vast im-

pact on globalized societies, it is necessary to recognize

some of the issues of how software is (often) either passively-

perceived or actively-observed, without an articulation of

the relations. We offer a method to read the signs of the

relational aspect of software observance. It’s a crucial as-

pect of our guide. It will give you another view on software

that will shape your ability to survive any kind of software

disaster.

Warning:

45

Example:

What follows is an example of a possible diagnostic ques-

tionnaire.

46

Sample Questionnaire

What to expect You will obtain a cartography of software

users profiles. It will help you to shape your own relation to

software. You will be able to construct your own taxonomy

47

and classifcation of software users that is needed in order

to find a means of rescue in case of a software catastrophy.

• SKILLS

• What kind of user would you say that you are?

• What is your most frequently used type of software?

• How often do you install/experiment/learn new soft-

ware?

• History

• What is your first recollection of software use?

• How often do / when did you last purchase software

or pay for a software service?

• Ethics

• What is the software feature you care about the most?

• Do you use any free software?

– if yes than

– do you remember your first attempt at using this

software service? Do you still use it? If not why?

• Do you pay for media distribution/streaming services?

• Do you remember your first attempt at using free soft-

ware and how did that make you feel?

• Have you used any of these software services : face-

book, dating app (grindr, tinder, etc.), twitter, insta-

gram or equivalent.

• Can you talk about your favorite apps or webtools that

you use regularly?

• What is most popular software your friends use?

• SKILL

• Would you say that you are a specilised user?

• Have you ever used the command line?

• Do you know about scripting?

• Have you ever edited an HTML page? A CSS file? A

PHP file? A configuration file?

• Can you talk about your most technical encounter

with your computer / telephone?

• ECONOMY

• How do you pay for your software use?

– Please elaborate (for example, do you buy the

software? / contribute in kind / deliver services

or support)

– What is the last software that you paid for using?

– What online services are you currently paying

for?

– Is someone paying for your use of service?

• Personal

• What stories do you have concerning contracts and

administration in relation to your software, Internet or

computer?

• How does software help you shape your relations

with other people?

• From which countries does your softwares come from

/ reside? How do you feel about that?

• Have you ever read a terms of software service, what

about one that is not targeting the American market?

48

Sample questionnaire results

49

Possible/anticipated user profiles

50

. . . meAsHardwareOwnerSoftwareUSER:

“I did not own a computer personally until very very late as

I did not enjoy gaming as a kid or had interest in spend-

ing much time behind PC beyond work (and work com-

puter). My first was hence I think in 2005 and it was a SGI

workstation that was the computer of the year 2000 (cost

10.000USD) and I got it for around 300USD. Proprietary

drivers for unified graphics+RAM were never released, so

it remained a software dead-end in gorgeous blue curved

chassis http://www.sgidepot.co.uk/sgidepot/pics/vwdocs.jpg”

51

. . . meAsSoftwareCONSUMER:

“I payed/purchased software only twice in my life (totalling

less then 25eur), as I could access most commercial soft-

ware as widely pirated in Balkans and later had more pas-

sion for FLOSS anyway, this made me relate to software as

material to exchange and work it, rather than commodity

goods I could or not afford.”

52

. . . meAsSoftwareINVESTOR:

“I did it as both of those apps were niche products in early

beta (one was Jeeper Elvis, real-time-non-linear-video-editor

for BeOS) that failed to reach market, but I think I would

likely do it again and only in that mode (supporting the

bleeding edge and off-stream work), but maybe with more

than 25eur.”

53

. . . meAsSoftwareUserOfOS:

“I would spend most of 80s ignoring computers, 90ties fig-

uring out software from high-end to low-end, starting with

OSF/DecAlpha and SunOS, than IRIX and MacOS, finally

Win 95/98 SE, that permanently pushed me into niches

(of montly LINUX distro install fests, or even QNX/Solaris

experiments and finally BeOS use).”

54

. . . meAsSoftwareWEBSURFER:

“I got used to websurfing in more than 15 windows on

UNIX systems and never got used to less than that ever

since, furthermore with addition of more browser options

this number only multiplied (always wondered if my first

system was Windows 3.11 - would I be a more focused

person and how would that form my relations to browser

windows>tabs).”

55

. . . meAsSoftwareUserOfPropertarySoftware:

”I signed one NDA contract in person on the paper and

with ink on a rainy day while stopping of at trainstaion in

north Germany for the software that was later to be pulled

out of market due to problematic licencing agreement (intu-

itivly I knew it was wrong) - it had too much unprofessional

pixeleted edges in its graphics.

56

. . . meAsSoftwareUserOfDatingWebsites:

“I got one feature request implemented by a prominent

dating website (to search profiles by language they speak),

however I was never publicly acknowledged (though I tried

to make use of it few times), that made our relations feel a

bit exploitative and underappreciated.”

57

. . . meAsSoftwareUserTryingToGoPRO:

“my only two attempts to get into the software company

failed as they insisted on full time commitments. Later I

found out ones were intimidated in interview and other

gave it to a person that negotiated to work part time with

friend! My relation to professionalism is likely equally com-

plex and pervert as one to the software.”

58

Case study : W. W.

. . . ww.AsExperiencedAdventerousUSER - experiments with

software every two days as she uses FLOSS and Gnu/Linux,

cares the most for maliabity of the software - as a result

she has big expectations of flexibility even in software cat-

egory which is quite conventional and stability focused like

file-hosting.

. . . ww.AsAnInevstorInSoftware - paid compiled version of

FLOSS audio software 5 years ago as she is supportive

of economy and work around production, maintainance

and support, but she also used closed hardware/software

where she had to agree on licences she finds unfair, but

then she was hacking it in order to use it as an expert -

when she had time.

. . . ww.AsCommunicationSoftwareUSER - she is not using

commercial social networks, so she is very concious of

information transfers and time relations, but has no strong

media/format/design focus.

Q: What is your first recollection of software use?

A: ms dos in 1990 at school i was 15 or 16. oh no 12.

Basic in 1986.

Q: What are the emotions related to this use?

A: fun. i’m good at this. empowering

59

Q: How often do / when did you last purchase software or

pay for a software service?

A: I paid for ardour five years ago. I paid the developper

directly. For the compiled version. I paid for the service. I

pay for my website and email service at domaine public.

Q: What kind of user would you say you are?

A: An experienced user drawing out the line. I don’t be-

have.

Q: Is there a link between this and your issue?

A: Even if it’s been F/LOSS there is a lot of decision power

in my package.

Q: What is your most frequently used type of software?

A: Web browser. email. firefox & thunderbird

Q: How often do you install/experiment/learn new soft-

ware?

A: Every two days. I reinstall all the time. my old lts sys-

tem died. stop being supported last april. It was linux mint

something.

Q: Do you know about scripting?

A: I do automating scripts for any operation i have to doi

several times like format conversion.

Q: Can you talk about your most technical encounter with

your computer / telephone?

A: I’ve tried to root it. but i didn’t succeed.

60

Q: How much time do you wish to spend on such activities

like hacking, rooting your device?

A: hours. you should take your time

Q: Did you ever sign licence agreement you were not

agree with? How does that affect you?

A: This is the first thing your when you have a phone. it’s

obey or die.

Q: What is the software feature you care for the most?

A: malleability. different ways to approach a problem, a

challenge, an issue.

Q: Do you use any free software?

A: yes. there maybe are some proprietary drivers.

Q: Do you remember your first attempt at using free soft-

ware and how did that make you feel?

A: Yes i installed my dual boot in . . . 10 years ago. scared

and powerful.

Q: Do you use one of this software service: facebook, dat-

ing app (grindr of sort), twitter, instagram or equivalent?

A: Google, gmail that’s it

Q: Can you talk about your favorite apps or webtools that

you use regularly?

A: Music player. vanilla music and f-droid. browser. I pay

attention to clearing my history, no cookies. I also have

61

iceweasel. Https by default. Even though i have nothing to

hide.

Q: What stories around contracts and administration in

relation to your software internet or computer?

A: Nothing comes to my mind. i’m not allowed to do, to

install on phone. When it’s an old phone, there is nothing

left that is working you have to do it.

Q: How does software help you shape your relations with

other people?

A: It’s a hard question. if it’s communication software of

course it’s it’s nature to be related to other people.there

is an expectency of immediate reply, of information trans-

fer. . . It’s troubling your relation with people in certain situ-

ations.

Q: From which countries does your softwares live / is com-

ing from? How do you feel about that?

A: i think i chose the netherlands as a miror. you are hop-

ing to reflect well in this miror.

Q: Have you ever read a terms of software service; one

that is not targeting the American market?

A: i have read them. no.

62

Method: Agile Sun Salutation

Remember:

Agile software development describes a set of values

and principles for software development under which

requirements and solutions evolve through the

collaborative effort of self-organizing cross-functional

teams. It advocates adaptive planning, evolutionary

development, early delivery, and continuous

improvement, and it encourages rapid and flexible

response to change. These principles support the

definition and continuing evolution of many software

development methods. 10

What: You will be observing yourself

How:

Scrum is a framework for managing software

development. It is designed for teams of three to nine

developers who break their work into actions that can

be completed within fixed duration cycles (called

“sprints”), track progress and re-plan in daily

15-minute stand-up meetings, and collaborate to

deliver workable software every sprint. Approaches to

coordinating the work of multiple scrum teams in

10 AG I L E S O F T WA R E D E V E L O P M E N T — W I K I P E D I A , T H E F R E E
E N C Y C L O P E D I A. Wikipedia contributors, 2018.

63

larger organizations include Large-Scale Scrum,

Scaled Agile Framework (SAFe) and Scrum of

Scrums, among others. 11

When: Anywhere where it’s possible to lie on the floor

Who:

Self-organization and motivation are important, as

are interactions like co-location and pair

programming. It is better to have a good team of

developers who communicate and collaborate well,

rather than a team of experts each operating in

isolation. Communication is a fundamental

concept. 12

Urgency: Using Agile software development methods to

develop a new path into your professional and personal

life towards creativity, focus and health.

Warning:

The agile movement is in some ways a bit like a

teenager: very self-conscious, checking constantly its

appearance in a mirror, accepting few criticisms, only

interested in being with its peers, rejecting en bloc all

11 S C R U M (S O F T WA R E D E V E L O P M E N T) — W I K I P E D I A , T H E
F R E E E N C Y C L O P E D I A. Wikipedia contributors, 2018.

12 T H E M A N I F E S T O F O R AG I L E S O F T WA R E D E V E L O P M E N T.
Wikipedia contributors, 2018.

64

wisdom from the past, just because it is from the

past, adopting fads and new jargon, at times cocky

and arrogant. But I have no doubts that it will mature

further, become more open to the outside world,

more reflective, and also therefore more effective. 13

Example:

Hello and welcome to the presentation of the agile yoga

methodology. I am Allegra, and today I’m going to be your

personal guide to YOGA, an acronym for why organize?

Go agile! I’ll be part of your team today and we’ll do a few

exercises together as an introduction to a new path into

your professional and personal life towards creativity, focus

and health.

A few months ago, I was stressed, overwhelmed with my

work, feeling alone, inadequate, but since I started practic-

ing agile yoga, I feel more productive. I have many clients

as an agile yoga coach, and I’ve seen new creative busi-

ness opportunities coming to me as a software developer.

For this first experience with the agile yoga method and be-

fore we do physical exercises together, I would like to invite

you to close your eyes. Make yourself comfortable, lying

on the floor, or sitting with your back on the wall. Close

your eyes, relax. Get comfortable. Feel the weight of your

body on the floor or on the wall. Relax.

13 AG I L E ’ S T E E N A G E C R I S I S ? Philippe Kruchten, 2011.

65

Leave your troubles at the door. Right now, you are not

procrastinating, you are having a meeting at the <SAY

THE NAME OF YOUR LOCATION HERE>, a professional

building dedicated to business, you are meeting yourself,

you are your own business partner, you are one. You are

building your future.

You are in a room standing with your team, a group of lean

programmers. You are watching a white board together.

You are starting your day, a very productive day as you

are preparing to run a sprint together. Now you turn to-

wards each other, making a scrum with your team, you

breathe together, slowly, inhaling and exhaling together,

slowly, feeling the air in and out of your body. Now you

all turn towards the sun to prepare to do your ASSanas,

the agile Sun Salutations or ASS with the team dedicated

ASS Master. She’s guiding you. You start with Namaskar,

the Salute. your palms joined together, in prayer pose. you

all reflect on the first principle of the agile manifesto. your

highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

Next pose, is Ardha Chandrasana or (Half Moon Pose).

With a deep inhalation, you raise both arms above your

head and tilt slightly backward arching your back. you wel-

come changing requirements, even late in development.

66

Agile processes harness change for the customer’s com-

petitive advantage. then you all do Padangusthasana (Hand

to Foot Pose). With a deep exhalation, you bend forward

and touch the mat, both palms in line with your feet, fore-

head touching your knees. you deliver working software

frequently.

Surya Darshan (Sun Sight Pose). With a deep inhalation,

you take your right leg away from your body, in a big back-

ward step. Both your hands are firmly planted on your mat,

your left foot between your hands. you work daily through-

out the project, business people and developers together.

now, you’re flowing into Purvottanasana (Inclined Plane)

with a deep inhalation by taking your right leg away from

your body, in a big backward step. Both your hands are

firmly planted on your mat, your left foot between your

hands. you build projects around motivated individuals.

you give them the environment and support they need,

and you trust them to get the job done.

You’re in Adho Mukha Svanasana (Downward Facing Dog

Pose). With a deep exhalation, you shove your hips and

butt up towards the ceiling, forming an upward arch. Your

arms are straight and aligned with your head. The most

efficient and effective method of conveying information to

and within a development team is face-to-face conversa-

tion.

67

Then, Sashtang Dandawat (Forehead, Chest, Knee to Floor

Pose). With a deep exhalation, you lower your body down

till your forehead, chest, knees, hands and feet are touch-

ing the mat, your butt tilted up. Working software is the

primary measure of progress.

Next is Bhujangasana (Cobra Pose). With a deep inhala-

tion, you slowly snake forward till your head is up, your back

arched concave, as much as possible. Agile processes

promote sustainable development. You are all maintain-

ing a constant pace indefinitely, sponsors, developers, and

users together.

Now back into Adho Mukha Svanasana (Downward Facing

Dog Pose). Continuous attention to technical excellence

and good design enhances agility.

And then again to Surya Darshan (Sun Sight Pose). Simplicity–

the art of maximizing the amount of work not done–is es-

sential. Then to Padangusthasana (Hand to Foot Pose).

The best architectures, requirements, and designs emerge

from self-organizing teams.

You all do again Ardha Chandrasana (Half Moon Pose).

At regular intervals, you as the team reflect on how to be-

come more effective, then tune and adjust your behavior

accordingly. you end our ASSanas session with a salute

to honor your agile yoga practices. you have just had a

productive scrum meeting. now i invite you to open your

68

eyes, move your body around a bit, from the feet up to the

head and back again.

Stand up on your feet and let’s do a scrum together if you’re

ok being touched on the arms by someone else. if not, you

can do it on your own. so put your hands on the shoulder

of the SCP around you. now we’re joined together, let’s

look at the screen together as we inhale and exhale. sync-

ing our body together to the rythms of our own internal

software, modulating our oxygen level intake requirements

to the oxygen availability of our service facilities.

Now, let’s do together a couple of exercise to protect and

strengthen our wrists. as programmers, as internauts, as

entrepreneurs, they are a very crucial parts of the body

to protect. in order to be able to type, to swipe, to shake

hands vigourously, we need them in good health. So bring

to hands towards each other in a prayer pose, around a

book, a brick. You can do it without but I’m using my ex-

treme programming book - embrace change - for that. So

press the palms together firmly, press the pad of your fin-

gers together. do that while breathing in and out twice.

Now let’s expand our arms towards us, in the air, face and

fingers facing down. like we’re typing. make your shoulders

round. let’s breath while visualizing in our heads the first

agile mantra : Individuals and interactions over processes

and tools.

69

Now let’s bring back the arms next to the body and raise

them again. And let’s move our hands towards the ceiling

this time. Strenghtening our back. In our head, the second

mantra. Working software over comprehensive documen-

tation. now let’s bring back the hands in the standing posi-

tion. Then again the first movement while visualizing the

third mantra : Customer collaboration over contract nego-

tiation and then the second movement thinking about the

fourth and last mantra : Responding to change over follow-

ing a plan and of course we continue breathing. Now to

finish this session, let’s do a sprint together in the corridor

!

70

Method: Hand reading

How: Visit the Future Blobservation Booth to have your

fortunes read and derive life insight from the wisdom of

software.

What: Put your hand in the reading booth and get your line

read.

Why: The hand which holds your mouse everyday hides

many secrets.

Example:

* sample reading timeline:

* 15:00 a test user, all tests clear and systems are on-
line a user who said goodbye to us another user a user who thought it’d be silly to say thank you to the ma-
chine but thank you very much another kind user who said thank you yet an-
other kind user another user, no feeback a nice user who found the read-
ing process relieving yet another kind user a scared user! took the hand out but ended up trust-
ing the system. ”so cool thanks guys” another user a young user! this is a funny computer
* 15:35 another nice user
* 15:40 another nice user
* 15:47 happy user (laughing)
* 15:51 user complaining about her fortune, saying it’s not true. Found the read-
ing process creepy but eased up quickly
* 15:59 another nice user: http://etherbox.local:9001/p/SCP.sedyst.md
* 16:06 a polite user
* 16:08 a friendly playful user (stephanie)
* 16:12 a very giggly user (wendy)
* 16:14 a playful user - found the reading process erotic - DE-
FRAGMENTING? NO! Thanks Blobservation http://etherbox.local:9001/p/SCP.loup.md
* 16:19 a curious user
* 16:27 a friendly user but oh no, we had a glitch and com-
puter crashed. But we still delivered the fortune. We got a thank you anyway

71

* 16:40 a nice user, the printer jammed but it was sorted out quickly *16:42 an-
other nice user
* 16:50 nice user (joak)
* 16:52 yet another nice user (jogi)
* 16:55 happy user! (peter w)
* 16:57 more happy user (pierre h)
* 16:58 another happy user
* 17:00 super happy user (peggy)
* 17:02 more happy user

Example:

Software time is not the same as human time.

Computers will run for AS LONG AS THEY WILL BE

ABLE TO, provided sufficient power is available. You,

as a human, don’t have the luxury of being always

connected to the power grid and this have to rely on

your INTERNAL BATTERY. Be aware of your power

cycles and set yourself to POWER-SAVING MODE

whenever possible.

72

Embodiment / body techniques

74

Method: Comportments of software (occupational haz-

ards)

Remember:

The analysis of common sense, as opposed to the

exercise of it, must then begin by redrawing this

erased distinction between the mere matter-of-fact

apprehension of reality–or whatever it is you want to

call what we apprehend merely and

matter-of-factly–and down-to-earth, colloquial

wisdom, judgements, and assessments of it.

What: Observe and catalog the common gestures, com-

mon comportments, and common sense(s) of software.

How: This can be done through observation of yourself

or others. Separate the apprehended and matter of fact

from the meanings, actions, reactions, judgements, and

assessments that the apprehension occasions.

Note: The common sense and comportments of software

are of course informed and conditioned by those of hard-

ware and so perhaps this is more accurately a method for

articulating comportments of computing. [[Our bodies, our

selves and our software. . . the collective body]]

Warning: Software may harm your physical and emotional

health both by design and by accident

75

Flow-regulation, logistics, seamlessness

76

Method: Flowcharts (Flow of the chart – chart of the flow

on demand!)

Example:

77

Beingontheside/inthemiddle/behind

78

Method: Something in the Middle Maybe (SitMM)

What: The network traffic gets observed. There are differ-

ent sniffing software out there which differ in granularity

and how far the user can taylor the different functionality.

SitMM builds on one of these tools called scapy 14.

How: SitMM takes a closer look at the network traffic com-

ing from/going to a software curious person’s device. The

software curious person using SitMM may ask to filter the

traffic based on application or device of interest.

Who:

The software curious person gets to observe their own

traffic. Ideally, observing ones own network traffic should

be available to anyone, but using such software can be

deemed illegal under different jurisdictions.

For example, in the US wiretap law limit packet-sniffing to

parties owning the network that is being sniffed or the avail-

ability of consent from one of the communicating parties.

Section 18 U.S. Code 2511 (2) (a) (i) says:

It shall not be unlawful . . . to intercept . . . while

engaged in any activity which is a necessary incident

to the rendition of his service or to the protection of

the rights or property of the provider of that service

14 http://www.secdev.org/projects/scapy/

79

See here for a paper 15 on the topic. Google went on a big

legal spree to defend their right to capture unencrypted

wireless traffic with google street view cars. The courts

were concerned about wiretapping and infringements on

the privacy of users, and not with the leveraging of private

and public WiFi infrastructure for the gain of a for profit

company. The case raises hard questions about the state,

ownership claims and material reality of WiFi signals. So,

while WiFi sniffing is common and the tools like SitMM

are widely available, it is not always possible for software

curious persons to use them legally or to neatly filter out

“their traffic” from that of “others”.

When: SitMM can be used any time a software curious

person feels the weight of the (invisible) networks.

Why: SitMM is intended to be a tool that gives artists, de-

signers and educators an easy to use custom WiFi router

to work with networks and explore the aspects of our daily

communications that are exposed when we use WiFi. The

goal is to use the output to encourage open discussions

about how we use our devices online.

Example:

Snippets of a Something In The Middle, Maybe - Report

15 http://spot.colorado.edu/ sicker/publications/issues.pdf

80

UDP 192.168.42.32:53649 -¿ 8.8.8.8:53
TCP 192.168.42.32:49250 -¿ 17.253.53.208:80
TCP 192.168.42.32:49250 -¿ 17.253.53.208:80
TCP/HTTP 17.253.53.208:80 GET http://captive.apple.com/mDQArB9orEii/Xmql6oYqtUtn/f6xY5snMJcW8/CEm0Ioc1d0d8/9OdEOfkBOY4y.html
TCP 192.168.42.32:49250 -¿ 17.253.53.208:80
TCP 192.168.42.32:49250 -¿ 17.253.53.208:80
TCP 192.168.42.32:49250 -¿ 17.253.53.208:80
UDP 192.168.42.32:63872 -¿ 8.8.8.8:53
UDP 192.168.42.32:61346 -¿ 8.8.8.8:53
...
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443
TCP 192.168.42.32:49260 -¿ 17.134.127.97:443

##
Destination Address: 17.253.53.208
Destination Name: nlams2-vip-bx-008.aaplimg.com

Port: Connection Count
80: 6

##
Destination Address: 17.134.127.79
Destination Name: unknown

Port: Connection Count
443: 2
##
Destination Address: 17.248.145.76
Destination Name: unknown

Port: Connection Count
443: 16

81

Method: What is it like to be AN ELEVATOR?

What: Understanding software systems by becoming them

How: Creating a flowchart to incarnate a software system

you use everyday

Warning: Uninformed members of the public may panic

when confronted with a software performance in a closed

space.

Example: What is it like to be an elevator?

what
is
it
like
to be
an
elevator?

”from 25th floor to 1st floor”

light on button light of 25th floor
check current floor
if current floor is 25th floor
no
if current floor is ...
go one floor up
... smaller than 25th floor
go one floor down
... bigger than 25th floor
stop elevator
turn button light off of 25th floor
turn door light on

82

open door of elevator
play sound opening sequence
yes
start
user pressed button of 25th floor
close door of elevator
if door is closed
user pressed 1st floor button
start timer for door closing
if timer is running more than three seconds
yes
yes
light on button
go one floor down
no
if current floor is 1st floor
update floor indicator
check current floor
stop elevator
no
yes
light off button
turn door light on
open door of elevator
play sound opening sequence
end
update floor indicator

83

Method: Side Channel Analysis

Urgency: Side Channel attacks are possible by disregard-

ing the abstraction of software into pure logic: the physical

effects of the running of the software become backdoors

to observe its functioning, both threatening the control of

processes and the re-affirming the materiality of software.

Warning: engineers are good guys!

Example:

84

Collections / collecting

86

Method: Compiling a bestiary of software logos

What: Since the early days of GNU-linux and cemented

through the ubiquitous O’Reilly publications, the visual cul-

ture of software relies heavily on animal representations.

But what kinds of animals, and to what effect?

How:

Compile a collection of logos and note the metaphors for

observation: * stethoscope * magnifying glass * long neck

(giraffe)

Example:

% http://animals.oreilly.com/browse/
% [check Testing the testbed pads for examples]
% [something on bestiaries]

87

Method: Testing the testbed: testing software with obser-

vatory ambitions (SWOA)

Warning: this method may make more sense if you first

take a look at the Something in the Middle Maybe (SitMM) 16

which is an instance of a SWOA

How: The interwebs hosts many projects that aim to pro-

duce software for observing software, (from now on Soft-

ware With Observatory Ambitions (SWOA)). A compar-

ative methodology can be produced by testing different

SWOA to observe software of interest. Example: use dif-

ferent sniffing software to observe wireless networks, e.g.,

wireshark vs tcpdump vs SitMM. Comparing SWOA re-

veals what is seen as worthy of observation (e.g., what

protocols, what space, which devices), the granularity of

the observation (e.g., how is the observation captured, in

what detail), the logo and conceptual framework of choice

etc. This type of observation may be turned into a service

(See also: Something in the Middle Maybe (SitMM)).

When: Ideally, SWOA can be used everywhere and in ev-

ery situation. In reality, institutions, laws and administrators

like to limit the use of SWOA on infrastructures to people

who are also administering these networks. Hence, we

are presented with the situation that the use of SWOA is

condoned when it is down by researchers and pen testers

16 http://pad.constantvzw.org/p/observatory.guide.sitmm

88

(e.g., they were hired) and shunned when done by others

(often subject to name calling as hackers or attackers).

What: Deep philosophical moment: most software has a

recursive observatory ambition (it wants to be observed

in its execution, output etc.). Debuggers, logs, dashboards

are all instances of software with observatory ambitions

and can not be separated from software itself. Continu-

ous integration is the act of folding the whole software

development process into one big feedback loop. So, what

separates SWOA from software itself? Is it the intention

of observing software with a critical, agonistic or adver-

sarial perspective vs one focused on productivity and ef-

ficiency that distinguishes SWOA from software? What

makes SWOA a critical practice over other forms of sot-

ware observation. If our methodology is testing SWOA,

then is it a meta critique of critique?

Who: If you can run multiple SWOAs, you can do it. The

question is: will people like it if you turn your gaze on their

SWOA based methods of observation? Once again we

find that observation can surface power asymmetries and

lead to defensiveness or desires to escape the observation

in the case of the observed, and a instinct to try to conceal

that observation is taking place.

Urgency: If observation is a form of critical engagement in

that it surfaces the workings of software that are invisible

89

to many, it follows that people would develop software to

observe (SWOAs). Testing SWOAs puts this form of criti-

cal observation to test with the desire to understand how

what is made transparent through each SWOA also makes

things invisible and reconfigures power.

Note: Good SWOA software usually uses an animal as a

logo.:D

Warning: Many of the SWOA projects we looked at are

promises more than running software/available code. Much

of it is likely to turn into obsolete gradware, making testing

difficult.

90

Method: Prepare a reader to think theory with software

What: Compile a collection of texts about software.

How: Choose texts from different realms. Software obser-

vations are mostly done in the realm of the technological

and the pragmatic. Also the ecology of texts around soft-

ware includes first and foremost manuals, technical doc-

umentation and academic papers by software engineers

and these all ‘live’ in different realms. More recently, the

field of software studies opened up additional perspec-

tives fuelled by cultural studies and sometimes filosophy.

By compiling a reader . . . ways of speaking/writing about.

Proximity.

Example:

Pull some quotes from the reader, for example from the chap-
ter: Observation and its consequences

Lilly Irani, Hackathons and the Making of Entrepreneurial Citi-
zenship, 2015 http://sci-hub.bz/10.1177/0162243915578486

Kara Pernice (Nielsen Norman Group), Talking with Participants Dur-
ing a Usability Test, January 26, 2014, https://www.nngroup.com/articles/talking-
to-users/

Matthew G. Kirschenbaum, Extreme Inscription: Towards a Gramma-
tology of the Hard Drive. 2004 http://texttechnology.mcmaster.ca/pdf/vol13˙2˙06.pdf

Alexander R. Galloway, The Poverty of Philosophy: Realism and Post-
Fordism, Critical Inquiry. 2013, http://cultureandcommunication.org/galloway/pdf/Galloway,%20Poverty%20of%20Philosophy.pdf
Edward Alcosser, James P. Phillips, Allen M. Wolk, How to Build a Work-
ing Digital Computer. Hayden Book Company, 1968. https://archive.org/details/howtobuildaworkingdigitalcomputer˙jun67

91

Matthew Fuller, ”It looks like you’re writing a letter: Mi-
crosoft Word”, Nettime, 5 Sep 2000. https://library.memoryoftheworld.org/b/xpDrXE˙VQeeuDDpc5RrywyTJwbzD8eatYGHKmyT2A˙HnIHKb

Barbara P. Aichinger, DDR Memory Errors Caused by Row Ham-
mer. 2015 www.memcon.com/pdfs/proceedings2015/SAT104˙FuturePlus.pdf

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. 2015 http://palms.ee.princeton.edu/system/files/SP˙vfinal.pdf

92

Colophon

The Guide to technogalactic software observing was com-

piled by Carlin Wing, Martino Morandi, Peggy Pierrot, Anita,

Christoph Haag, Michael Murtaugh, Femke Snelting

License: Free Art License

Support:

Sources:

Constant, February 2018

93

