








This long quote is the opening section of the page titled ‘Don’t Repeat Yourself’
(DRY) on the Portland Pattern Repository (PPR). The pages of the web-
site, devoted in part to the practice of programming, are heavily cross-linked,
forming a messy tangle of programming paradigms and self-help tips for
improving code with CamelCased hyperlinks, 1 often in the form of an im-
perative such as RefactorMercilessly, PutThingsWhereYouLook and
SeparateTheWhatFromTheHow. At the same time it contains seemingly con-
tradictory meta-tips that warn against SilverBullet and OneTrickPony
solutions. Despite the apparent clarity and appeal for authoritativeness, later
in the same page, the discussion presented above takes on a slightly different
tone:

But:

It may take time and effort to select and/or create a definitive source – see
YouArentGonnaNeedIt.
– DickBotting 2

Hmm. ‘Every piece of knowledge must have a single, unambiguous, authori-
tative representation within a system’. Is this not a reasonable definition for a
Singleton?

No. DRY refers to your source code, not your running program. ThirdNormalForm
is the analogous principle for data.

Ugh. I think you’re both barking up the wrong trees there. It doesn’t refer to
source code, nor to the running program. It refers to a system. Needn’t have
computers involved at all. 3

The PPR is the product of a particular community of programmers. It is in fact
the ‘mother of all wikis’, and was created (and maintained) by Ward Cunningham,
who coined the term ‘wiki’. The fact that the discourse of the PPR takes place
on, and came about in conjunction with the development of, the wiki, is signifi-
cant. While superficially a wiki page provides for a kind of ‘single source’, its
great strength lies in the fact that by containing the entire history of edits, by
permitting editing by anyone and by allowing differences of opinion to be made
explicit, the wiki itself is far from being free of contradiction or duplication.

1 CamelCased hyperlinks are links in which capitalized words are merged into compound words,
sometimes used in Wiki markup languages for key terms that become automatically linked to other
Wiki pages. See the entry on Wikipedia: http://en.wikipedia.org/wiki/CamelCase (accessed
13.06.2013).

2 http://c2.com/cgi/wiki?DickBotting
3 See the page ‘Don’t Repeat Yourself’.

3



The language of seeking ‘single, authoritative, unambiguous’ knowledge by
the architects of the software that would go on to inspire the more popular
Wikipedia project seems to sadly devalue its own core strengths. While the
prescriptive nature of the DRY discourse appeals to a programmer’s sense
of utility and efficiency, it also seems to be in denial of the very nature of the
practice it aims to serve.

Programmers walk a fine line between seeking ecstatic singularities while at
the same time enduring dutiful and crushing conformity to correctness and con-
vention, performing a practice that is by nature highly repetitive. Programmers
often have to search for a balance between considering the details of a par-
ticular situation and flying into euphoric quests for abstraction, desiring code
that goes beyond the satisfaction of some particular need into the ecstatic
realm of the unforeseen and unexpected. The quasi-ejaculatory nature of this
process is evident in another of the PPR principles, that of avoiding ‘premature
generalization’.

Popular web programming frameworks, such as Ruby on Rails and Django,
pride themselves on adhering to the ‘principle of DRY’. The Rails framework
initially promoted itself as a response to the drudgery of website programming
and was unique in listing the ‘joy’ of using it, among its other technical features,
as a way of winning over programmers: ‘Rails is a full-stack, open-source web
framework in Ruby for writing real-world applications with joy and less code
than most frameworks spend doing XML sit-ups’. 4 Such ‘joy’ is contrasted
with repetition, something much less desirable and seen as valueless, with its
essential qualities remaining unrecognized.

However, it is often the programmers’ recognition of a pattern already learned
through repetition that is most compelling in the use of a particular framework.
In the same way that one feels lost and isolated in the woods and then reas-
sured when one comes across a well worn path, frameworks are condensa-
tions of practice and reinforce a sense of community among their practitioners.
In contrast to the practice of belonging, the fun to be had in the pioneering
discovery of the novel or unique is isolating. In addition to this, repetition is
intrinsically intertwined with the development of the craft of programming.

4 The ‘Ruby on Rails’ website soon after its launch in 2005 – archived link,
http://web.archive.org/web/20050601015146/http://www.rubyonrails.org/ (accessed 13.06.2013).

4



[. . . Skill] development depends on how repetition is organised. This is
why in music, as in sports, the length of a practice session must be
carefully judged: the number of times one repeats a piece can be no
more than an individual’s attention span at a given stage. As skill
expands, the capacity to sustain repetition increases. In music this is the
so-called Isaac Stern rule, the great violinist declaring that the better your
technique, the longer you can rehearse without becoming bored. There
are ‘Eureka moments’ that turn the lock in a practice that has jammed,
but they are embedded in routine. 5

There can be a tangible pleasure in quickly typing out the template of a familiar
programming structure. Far from celebrating the birth of a unique new creation
from scratch, it is rather a joyful expression of the pattern that increasingly be-
comes physically embodied in the programmer him/herself. Here, the material
that one once struggled with, with time becomes something ingrained in ‘one’s
fingers’.

On the surface, the black box of abstraction promises the programmer that if
he/she can only get the abstraction right, he/she will never have to deal with a
particular kind of problem again. In fact, working with abstraction is a gradual
process, inclusive of struggling repeatedly with the material of a problem and,
thus, acquiring the skill that would feel ‘natural and easy’ by becoming a part
of the body of the programmer. Rather than removing the problem, repetition
produces increased capacity to deal with the problem and, thus, the problem
can be repeatedly successfully tackled. The formalization of abstraction in the
form of code (the syntax and naming of a function object, for instance) can
be seen as merely a culmination of the necessary prerequisite of practising a
repetitive process that made its recognition and recall possible.

Working with recursion is a particular kind of programming skill that often takes
a great deal of practice before it is fully mastered. Once it is learned, there is a
self-effacing wonder in watching 20 lines of code dissolving down to ten, then
five, as all the ‘edge cases’ that could possibly be imagined map onto the few
folds of a particular recursive structure. Similar to the pleasure of kneading
dough, working with recursion is about the almost miraculous transformation
of code through repeatedly working it.

5 Sennett, Richard: The Craftsman. London, UK 2009. 38.

5



Repetition is an essential part of the process of recognizing and constructing
abstractions. The fact that experienced programmers might directly write code
using concise and ‘correct’ abstractions is more a reflection of their experience
than an absolute (and transferable) measure of quality.

Code smells

If you are aware of CodeSmells, and duplicate code is one of the
strongest, and you react accordingly, your systems will get simpler. When
I began working in this style, I had to give up the idea that I had the
perfect vision of the system to which the system had to conform. Instead,
I had to accept that I was only the vehicle for the system expressing its
own desire for simplicity. My vision could shape initial direction, and my
attention to the desires of the code could affect how quickly and how well
the system found its desired shape, but the system is riding me much
more than I am riding the system. 6

My great Aunt Margaret, a piano teacher and former Catholic school princi-
pal, would implore all overnighting nieces and nephews to take a shower in
the morning, to counter the ‘beddy smell’. Naive as I was, it was only years
later that it occurred to me how the term ‘beddy’ was in fact a thinly veiled
euphemism for the less comfortable subject of one’s ‘body’. Just as my Aunt
displaced the body by the bed, the struggles of programming often get pro-
jected from programmers onto the code. Bad code has a smell, independent
desires and an ability to ride or be ridden by the programmer. Repetition can
be experienced as a tiring physical exercise.

In addition to devaluing repetition as something smelling ‘bad’, something to
be either absolutely avoided or at best tolerated, the transference of a smell to
code is also indicative of another set of displacements, such as the code being
separated from the practice of programming, and the practice of programming
being separated from the physical effort required of the body of the program-
mer him/herself. Coding can be, and often is, physically exhausting work, as
illustrated by the following passage:

6 See the page ‘Once and Only Once’, http://c2.com/cgi/wiki?OnceAndOnlyOnce, citation signed
‘KentBeck, feeling mystical, see MysticalProgramming’– another page at PPR (accessed
13.06.2013).

6



Just got off the phone with F. Feeling slightly remorseful at being kind of
pissy and short. Maybe need to write an email: Sorry I was vague. Orality
impaired – I could better write an email. I’ve been coding intensely over
the past 4 days. I was only half-listening as F ran down the planning for
the workshop – discounting that information that I already knew (annoyed
at the redundancies). . . a Borg voice speaks to me from the collective:
this information is not relevant; this conversation is inefficient. I’m having
difficulty following what’s being said.

Thinking of the ‘code smells’ – after these long stretches of coding the
smells take a physical form – though it’s not coming from the code . . . I’m
unable to tell if the unpleasant odors I seem sporadically aware of are
originating from rotting garbage in the bin or from me. Reminiscent of
baby diapers. Probably the garbage bag . . . must be.

Dim the screen – too bright. On with coding. . .

I can no longer come up with meaningful names for things. Have started
using names like aa, bb, and aaa. Switching between these abstract
symbols seems easier; reduced semantic overload = less need to think.

Can no longer remember what task I am currently working on. I start
writing down tasks not ‘to do’, but what I’m supposedly ‘doing now’, so
that each time I slip, I can refer to the note. Need to update the model
and regenerate the database before going to bed. Before I forget why it’s
important. 7

For programmer Will Crowthers, commenting on his hobby below, rock climbing
does not merely provide an escape from programming:

You would have to forget about everything. When you’re rock climbing,
you must not think about anything but the rock climbing or you’re apt to
get killed. And it just wipes everything out for a day or two or whatever it
is. However long you’re off climbing, which tended to be a weekend, you
don’t think of much else. 8

7 Personal notes written during programming work.
8 I N T E RV I E W W I T H W I L L C R O W T H E R., 1994. p.4

7





Crowthers’ ‘extreme hobby’ parallels the intensity of his experience of program-
ming itself. He needs an escape with a sufficiently matching intensity to give
him a break from that of the engrossingly ‘disembodied’ practice of coding.
Crowthers is best known for programming the early computer game classic
‘Collossal Cave Adventure’ (also known as ‘Adventure’) in his spare time while
working at the company BBN Technologies in Massachusetts in the late 1970s.
A pioneering example of an interactive program that simulates the experience
of cave exploration, the writing of the game was, according to Crowthers, in
part an attempt to reconnect to his children after an estrangement from his
wife whom he had met while caving. 9

‘Extreme Programming’, a concept whose origin and development can be
traced to Kent Beck on the PPR, 10 has become an important movement con-
cerning rethinking traditional approaches to software programming practice.
Beck’s choice of the term ‘extreme programming’ clearly invokes ‘extreme
sport’, and indirectly references the often frustrated desires of a programmer
to experience, in their practice of programming, the intensity of physical expe-
rience such as that described by Crowthers.
According to the principles of DRY, it would seem that the job of a program-
mer is to detect patterns and to fold these into redundancy-free perfection.
This suggests an ideal, Plato-inspired practice of programming, wherein the
programmer, after meditative moments of reflection, is able to effortlessly con-
dense the chaotic cacophony of the reality around him/herself into a stream
of precise expressions, gliding from unique formulation to unique formulation
and never looking back.
People imagine that computer programming is logical, a process similar to the
one of fixing a clock. Nothing could be further from the truth. Programming is
more akin to an illness, a fever, an obsession. It is like riding a train and never
being able to get off. 11

Programmer and journalist Ellen Ullman compares software design to using
methamphetamine, as the ‘speed high is the only state that approximates the
feel of a project at its inception. Yes, I understand. Yes, it can be done. Yes,
how straightforward. Oh yes, I see’. The trip is, however, brought to an abrupt
end when ‘you write some code, and suddenly there are dark, unspecified
areas’. 12

9 I N T E RV I E W W I T H W I L L C R O W T H E R., 1994.
10 See http://c2.com/cgi/wiki?ExtremeProgramming (accessed 13.06.2013).
11 Ullman, Ellen: “Out of Time: Reflections on the Programming Life”. In: Brook, James/Boal, Iain A.

(eds.): Resisting the virtual life: the culture and politics of information. 1995.
12 Ullman, Ellen: Close to the Machine: Technophilia and Its Discontents. 1997. p.21

9



Ullman’s description of how the transition from the plan to the writing of code
drops from the luminous clarity of a pre-implementation specification into the
dark areas of the unspecified seems to invoke something of the fear and
pleasure of Crowther’s cave explorations. The experience of working with code
can be an exhilarating modulation between the light and the dark, between
losing and regaining one’s footing, between the logical and the absurd.

Do repeat yourself

There is always a reason for missing an easy toss. Repeat toss and you
will find it. If you rap your knuckles against a window jamb or door, if you
brush your leg against a desk or a bed, if you catch your feet in the
curled-up corner of a rug, or strike a toe against a desk or chair go back
and repeat the sequence. You will be surprised to find how far off course
you were to hit that window jamb that door that chair. Get back on course
and do it again. How can you pilot a spacecraft if you can’t find your way
around you own apartment? It’s just like retaking a movie shot until you
get it right. And you will begin to feel yourself in a film moving with ease
and speed. But don’t try for speed at first. 13

In the short story ‘The Discipline of DE’, William Burroughs, in the guise of a
retired Colonel Sutton-Smith, describes to the reader the joys of living a life
according to the prescripts of ‘Do Easy’. The text is written primarily in the
second person: a parodic fusion of self-help guide and military pep talk. While
DE’s ‘do repeat yourself’ paradigm would ostensibly seem to oppose the ‘don’t’
of DontRepeatYourself, the two have a lot in common. When Burroughs
writes: ‘once you find the easy way you don’t have to think about it, . . . it will
almost do itself’, 14 one can hear echoes of Kent Beck’s ‘mystical’ musings of a
systems’ ‘own desire for simplicity’, cited above. DE’s message of ‘repeat until
perfection’ captures much of the reality of software design practice: a frequently
obsessive attention to detail and process, a tendency towards excessive (self-)
optimization and an aesthetization of efficiency. 15 The promises of ease and
speed could be taken straight from the copy of a new programming framework.

13 Burroughs, William S.: Word Virus: The William S. Burroughs Reader. 1999. p.386–92
14 Burroughs, William S.: Word Virus: The William S. Burroughs Reader. 1999. p.390
15 Fuller, Matthew: “Elegance”. In: idem (ed.): Software Studies – A Lexicon. Cambridge,

Massachusetts 2008. p.87–92

10



Everyday tasks become painful and boring because you think of them as
WORK something solid and heavy to be fumbled and stumbled over.
Overcome this block and you will find that DE can be applied to anything
you do even to the final discipline of doing nothing. The easier you do it
the less you have to do. He who has learned to do nothing with his whole
mind and body will have everything done for him. 16

Burroughs’ reductio ad absurdum reveals a dark side to DRY in its relation to
a larger software industry. In a system where code is a product to be protected
and exploited commercially, the efficiency of the process tends to eliminate
the usefulness of the programmer; truly efficient coding would lead to a point
where the coder him/herself becomes ‘redundant’, expendable. Burroughs’
final image of the mastery of doing nothing leading to a position of privilege and
power concisely reveals the implicit motivations behind much of the venture
capital interest in software development.

The GNU project was the response of one programmer, Richard Stallman,
to what he felt were the injustices of a software industry that separated the
programmer from the product of his/her labour through nondisclosure agree-
ments and restrictive software licenses. The GNU project and the ensuing Free
Software movement, encourage a practice of software development whereby
code is released under a license that ensures that it remains not only freely
usable, but also reworkable and redistributable by subsequent programmers.
In ‘freeing’ the code, the General Public License (GPL) shifts value from the
code to the surrounding practice. The value of free software is the community
of developers, documenters, researchers, designers and users which is rather
than the ‘shrink-wrapped product’ or ‘killer app’ per se.

Even with free software’s fundamental shift in value from code to community,
Stallman’s early manifesto still includes a ‘DRY’ stance as one of the core ‘ben-
efits’ of the project. ‘[The GNU project] means that much wasteful duplication
of system programming effort will be avoided. This effort can go instead into
advancing the state of the art.’ 17 As with the PPR, arguments for efficiency
seem to be inevitably made even when they contradict the realities of the
practice.

16 Burroughs, William S.: Word Virus: The William S. Burroughs Reader. 1999. p.391
17 T H E G N U M A N I F E S T O. Richard Stallman, 1985.

11



The free software community is a rich tapestry of duplication, forked projects
and reinventions of the proverbial wheel. The term ‘yet another’ is common
in the names of free software projects as a humorous way of acknowledging
(and gently atoning for) the redundancy. 18 Recursion and contradiction play
a substantial role in programmer humour. The GNU name itself (standing for
‘GNU’s not UNIX’) is a kind of nerd joke, doubly contradictory both as a version
of UNIX that is not UNIX, and inherently incomplete in its recursive definition.
In a similar way the very formulation of ‘Don’t Repeat Yourself’ as a kind of a
programmer’s mantra, and thus to be recursively repeated, is also absurd.

The negative implications of separating code from practice are many: formal
software instruction is pervasively discouraging to beginners and the ‘uniniti-
ated’. 19 The labour of software design is easily exploitable and software pro-
fessions are precarious, whereas the economic forces promote the fragile and
decontextualized product of code and ignore its larger sustaining community.

As a programmer, I ‘get’ DRY and I value Beck and the PPR in their contri-
butions to software and to the discussion of software practice. The problem
is that maxims, such as ‘Don’t repeat yourself’ only work when they are not
taken literally, and when their implicit values are questioned. There is a con-
tinual need to (re)value software practice and avoid reducing it to a kind of
‘shortest path’ problem.

Software practice includes logical contradiction, necessitates ‘bad’ code and
requires repetition. When, in the definition of DRY, the ‘duplication of knowl-
edge, not just text ’ is defined as a core part of ‘the problem’ to be solved,
it exposes an impoverished conception of knowledge isolated from practice.
In software design, as in other forms of cultural discourse, redundancy and
repetition are essential to the necessarily incomplete processes of knowledge
production, practice, circulation and maintenance.

18 Y E T A N O T H E R — W I K I P E D I A , T H E F R E E E N C Y C L O P E D I A. Wikipedia, 2013.
19 See, for instance, Margolis, Jane/Fisher, Allan: Unlocking the Clubhouse: Women in Computing. 2003. A quote

from Papert can also be useful here: “Children do not follow a learning path that goes from one true
position to another, more advanced true position. Their natural learning paths include false theories
that teach as much about theory building as true ones. But in school false theories are no longer
tolerated. [. . . ] Our educational system rejects the false theories of children, thereby rejecting the
way children really learn”.
Papert, Seymour: Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA 1993.

12






