
The Techno-Galactic Guide to Software ObservationMethods from the Techno-Galactic Software Observatory(Brussels, June 2017)

Constant, Association for Art and Media

The Techno-Galactic Guide to Software Observation

I am less interested in the critical practice of reflection, of
showing once-again that the emperor has no clothes, than in
finding a way to diffract critical inquiry in order to make
difference patterns in a more worldly way. 1

A spectre is haunting the galaxy. It is not revolutionary 2, it is notjust another global scale vulnerability either 3. No matter whereyou happen to be, with your phone or watched over by a passingsatellite, software daemons are running somewhere in the back-ground. Look! There they are, staring right back at you. Software’sentanglement in the everyday appears complete, but is it really?Let’s look more closely.
We find ourselves in a universe built on the 1990s revival of a1960s dream: software as a service (SaaS) 4, a framework inwhich the use of software has increasingly been knitted into the
production of software. While the rhetoric, rights, and proceduresthat proliferate in this universe suggest that software productionand consumption constitute separate realms, this knitting togetherradically alters the operative role of software in society. The corre-sponding shifts ripple across galaxies, through social structures,working conditions, and trans-universal logistics. It results in a pro-fusion of apparatuses that aspire to be seamless while optimizingand monetizing individual and collective flows of information in linewith the interests of a handful of actors. The diffusion of software

1 Donna Haraway: Modest Witness: Feminist Diffractions in Science Studies. In: The
Disunity of Science: Boundaries, Contexts, and Power. Ed. by Peter Galison andDavid J. Stump. 1996, pp. 428–4422 Karl Marx and Friedrich Engels: The communist manifesto. Penguin, 20023 Jann et al. Horn: Meltdown and Spectre Attack. 20184 Thomas Haigh: Software in the 1960s as Concept, Service, and Product. In: IEEE
Annals of the History of Computing 24.1 (2002), pp. 5–13

3

services affects individuals and communities in the form of intensi-fied identity shaping and self-management. It also transforms thepublic by capturing institutions and common use infrastructuresin supercharged start-up visions or the inertia of tech giants. Asmore and more software centralizes data flows in cloud services,effectively collapsing all societal spheres into the same process-ing logic, their service oriented architectures come to blur the lasttraces of the thin line that separates bio- from necro-politics. 5

And so software spins its web around us. As it twists we turn,trying to take some distance, only to realize that we are too welltangled in its gooey net. Caught upside down and dangling 6 weask: How can we interact, respond to, and think with software?What approaches can we use to recognize the agency of differentactors, their ways of working, and their politics? What methodsof observation are conducive to critical inquiry and affirmativediscord? How can we resurface software and find sites where itsinfrastructures are reconfiguring the everyday? How can we takestock of the ways software is always at work, especially where itis designed to disappear?
Overloaded by all these questions, vexed by constant pop-upsand push notifications, a fantasy takes shape: Let’s smash ourdevices with a sledge hammer, throw them out, retreat off grid andout of sight, and live happy software-free lives. But this fantasycannot hold, nor can it hold us. While ‘disconnection’ seems to bethe latest luxury-item for tech-billionaires – the same gang thatprofits from the extension of connectivity – for most human andnon-human inhabitants of this galaxy unplugging is not an option.

5 Tung-Hui Hu: A Prehistory of the Cloud. MIT Press, 20156 https://www.youtube.com/watch?v=NTZhrwR7CoE

4

Even those that experienced the joy that comes from catapultinga smart device across the street know that the liberating feelingthat follows does not last. We need a better option: one that letsus poke and push back at the daemons that insist on saturatingour time and surrounding our environment.
In June 2017 we gathered with a group of Software CuriousPersons (P.116) in Brussels for six days at the Techno-GalacticSoftware Observatory 7. There we engaged in the observationof the multiple scales of software, the industries and commu-nities that produce it and their devastatingly relational politicaleconomies. While clutching at our computers and keyboards, wepicked up the word observation, turning it over and around. Webrought it right up to our noses and then held it outstretchedto get a better look at the term’s colonial and positivist legacy.Observation, and the enabling of it through intensive data-centricfeedback mechanisms, is part of the cybernetic spells that under-pin the present day software production-consumption complex.Holding the pain and the promise of our limitations, of our situatedpoint of view, we synced our breath to the rhythm of our softwareand, with an agile sun salutation, began to explore the possibili-ties of engagement with software’s implications. “Excuse me, doyou know where to find the Techno-Galactic Walk-in Clinic?”
The Techno-Galactic Guide to Software Observation was collec-tively produced as an outcome of this temporary Observatory. Themethods tried and tested there were collected and compiled in thisguide. Although our modest acts of witnessing are incomplete andongoing, through this kind of collective ghost-hunting we foundsome ways for being in, around, through, and with software.

7 The Techno-Galactic Software was a worksession organised by Constant. http:/
/constantvzw.org/site/-The-Technogalactic-Software-Observat
ory-.html

5

This guide invites you to experiment with ways to stay with thetrouble of software. In it you will find a set of practical and imprac-tical tools for the tactical (mis)use of software, empowering andenabling users to resist embedded paradigms and assumptions.It is a collection of methods for approaching software, experienc-ing its myths and realities, its risks and benefits. Drawing on the-ories of software and computation developed in the wildernessof academia and through rigorously undisciplined research, wegrounded our methods in hands-on exercises and experimentsthat you can now try at home. These methods were developedin and inspired by the context of software production, hacker cul-ture, software studies, computer science research, Free Softwarecommunities, privacy activism, and artistic practice. Exploring andcross-contaminating ways of looking from these different milieus,we realised that reading is not enough. Software is not just text,formats are always already in execution, code produces its ownnormative perspective and depth of field.
Observation is one potential beginning – a way to turn engage-ment into tickling. Come join us at the edge of the universe, onthe metro platform, at your kitchen table or at your next biometricidentification, as we mark and measure critical distances from andentanglements with the seemingly endless software systems thatsurround us.

Invitation to The Walk-in Clinic, June 2017:

Do you suffer from the disappearance of your software into
the cloud, feel oppressed by unequal user privilege, or
experience the torment of software-ransom of any sort?
Bring your devices and interfaces to the World Trade Center!
With the help of a clear and in-depth session, at the
Techno-Galactic Walk-In Clinic we guarantee immediate
results. The Walk-In Clinic provides free hands-on

6

observations to software curious people of all kinds. A wide
range of professional and amateur practitioners will provide
you with Software-as-a-Critique-as-a-Service on the spot.
Available services range from immediate interface critique,
collaborative code inspection, data dowsing, various forms
of network analyses, unusability testing, identification of
unknown viruses, risk assessment, opening of black-boxes
and more. Free software observations provided. Last intake
at 16:45.

Announcing the Walk-in Clinic. Poster design: Harrisson

7

Retrospective / Take Out

This service ver ifi es whether your expectat ions are

being met. I f so, we provide you with your offi cial

record and you are ready to leave the cl inic .

A p p r o x i m a t e d u r a t i o n : 10 minutes

Flow of the Chart
Chart of the fl ow on demand!

SSoGY (SOFTWARE SKETCHING OBSERVATION

YUPPIES) is here to provide you with one and

only personal ized fl ow chart & chat for your

human-machine s i tuat ion!

A p p r o x i m a t e d u r a t i o n : 15 minutes

WTC-time

Refreshment

The fountain br ings a soothing corporate noise to

refresh any unsett l ingly quiet or unhappi ly f renet ic

spaces with water .

A p p r o x i m a t e d u r a t i o n : ongoing

Continuous integration

We monitor the seamless integrat ion of a l l services at

the software observatory cl inic , including the

circul at ion of bodies and bits .

A p p r o x i m a t e d u r a t i o n : ongoing

Process invocation

Process invocat ion is a service helping the user to

discover and visual ize processes normally kept

concealed from the user .

A p p r o x i m a t e d u r a t i o n : 15 minutes

walk-in clinic

12 06 2017
14:00 - 17:00

Software as a Critique as a Service (SaaCaaS) Directory

8

Something In The Middle Maybe
(SiTMM)

SomethingInTheMiddleMaybe observes the network

interact ions that your chosen software makes.

We ask pat ients what they want to observe (e .g. a

dai ly interact ion with my smartphone, or a specifi c

appl icat ion on my computer)

Pat ients get a log of the network connections

performed by their chosen interact ion.

A p p r o x i m a t e d u r a t i o n : 5 to 10 minutes

RSOC – Rel ational Software
Observatory Consultancy Service

By paying a v is i t to our ethnomethodology interview

pract ice you' l l be mapping perspect ives to know how

to observe software f rom dif ferent angles /

perspectives. Our pract ioners have at heart to make

possible the "what is the rel at ion to software"

discussions into a service

A p p r o x i m a t e d u r a t i o n : 12 minutes

“What is it l ike to be an elevator?”

In this service you can experience and analyse a

verbal l ive demo of a reverse engineered elevator

software. There is a lso the possibi l i ty to re-enact the

elevator software as a internal ized elevator , after

SCPs fi nished the fl ow chart stat ion.

A p p r o x i m a t e d u r a t i o n : To experience some minutes!
To reenact around 10 to 15
minutes!

Interface Détournement

B a s e l i n e o f t h e c r i t i c a l s e r v i c e :

Tired of business jargon and unnavigable services ?

Come to do an Interface Détournement !

M o t i v a t i o n o f t h e c r i t i c a l s e r v i c e :

- capital ism as sorcery (Isabel le Stengers) :

 we are under the bl ack magic of capital ism interface making

- we have the feel ing that some words are imposed to us,

 conseauently we are recl aiming a power of saying/naming

G o a l / D e s c r i p t i o n o f a s i t u a t i o n a t h a n d

M e t h o d s o f O b s e r v a t i o n :

-Unpacking an interface, fi xed our browsing speed

-Live redesign of an interface using the browser developer tools .

-Study the l ayout by removing al l the content

= Pl ay with the interface content , add some humour, i rony to i t .

A p p r o x i m a t e d u r a t i o n : unknown

File therapy

Do you have software concerns that regard a specifi c

fi le? Through this service you can experiment with

var ious therapeutic forms. Turn your software

anguish into a takeaway fi le .

Do you encounter software problems or do you have

concerns about part icul ar fi les? Through this service

you can experiment with var ious therapeutic forms.

Our therapeutic approach is inspired by the unix fi le

system paradigm in which every component of a

computer can be represented by a fi le , be i t your

hard dr ive, memory or sound card. Going together

through the affordances and l imitat ions of such a

paradigm, we hope to provide a more int imate access

to your software.

Whether i t is about specifi c problematic s i tuat ions

with your computer , or to address a general cur iosity

about fi lesystems, we wi l l take you by the hand

through an extensive intake.

 * Fi rst we wi l l discuss your interest or your

problem, to t ry and pick a fi le that speaks of your

concern. For example, i f you experience problems

with connecting to the network, we can take a

networkconfi gurat ion fi le . Or maybe you have

already a fi le in mind that you fi nd concerning.

 * Then you transfer the fi le to our dedicated usb

st ick and we wil l inspect i t on our computer .

 * During the inspection you wi l l get an

expl anat ion of the var ious t ransl at ions which happen

to the fi le .

 * On the basis of (ini t ia l ly) a v isual inspection,

we wi l l discuss which measures should be taken. Can

we intervene in the fi le , provide some "pixel surgery"

and provide you with a restored version? Or do we

need to move forward to more meditat ive treatments

such as sound therapy?

 * We hope that our service wi l l shi f t your

perspective on your s i tuat ion by experiencing how

fi les look l ike in a di f ferent environment.

A p p r o x i m a t e d u r a t i o n : 15 minutes

Agile Sun Salutation

Welcome to Agi le Sun Salutat ion, an introduction

to Agi le Yoga (Why Organise ? Go Agi le !) , a new

methodology to improve your professional and

personal l i fe .

A p p r o x i m a t e d u r a t i o n : 10 minutes

Techno-gal actic software walk-in clinic intake

Future Blobservation Booth

The hand which holds your mouse everyday hides

many secrets . Vis i t the Future Blobservat ion Booth

to have your fortunes read and der ive l i fe insight

f rom the wisdom of software.

A p p r o x i m a t e d u r a t i o n : The approximate durat ion
of our service wil l be on
average 2 minutes,
never less than 1 and
no more than 2 minutes
and 30 seconds.

Software as a Critique as a Service (SaaCaaS) Directory

9

N a m e o f t h e S o f t w a r e C u r i o u s P e r s o n

S i t u a t i o n

D e s c r i p t i o n o f s i t u a t i o n a t h a n d

D i r e c t e d t o S e r v i c e s

Something In The Middle Maybe (SiTMM)

Relational Software observatory Consultancy Service

"What is it like to be an elevator?"

Interface Détournement

File therapy

Agile Sun Salutation

To t a l t i m e a v a i l a b l e

E s t i m a t e d T i m e f o r s e r v i c e

W h a t w o u l d b e a o u t c o m e

E X I T S T A T U S C a n t h i s fi l e b e p u b l i s h e d

DONE NO

S T O R E F O R D E L E T I O N

T E C H N O G A L A C T I C S O F T WA R E O B S E R VAT O R Y WA L K - I N C L I N I C

Continuous integration

I n t a k e

Future Blobservation Booth

R e t r o s p e c t i o n

WTC-time

Flow of the chart - chart of the flow on demand!

NOT DONE

YES

S I G N AT U R E / DAT E

Intake form for Software Curious People (SCP)

10

WARNING

The survival techniques described in the following guide are to beused at your own risk in cases of emergency as well as in casesof nonurgent software curiosities.
our methods for observation,
like mapping, come with their luggage.

The publisher will not accept any responsibility in case of dam-ages caused by misuse, misunderstanding of instruction, or lackof curiosity. By trying the methods described in the guide, you ac-cept responsibility for losing or loosing data and for altering hard-ware, including hard disks, usb key, cloud storage, and screensperhaps by throwing them on the floor, or by falling on the flooryourself upon tangling your feet in an entanglement of cablessuch that your laptop goes flying.
No harm has been done to humans, animals, computers or plantswhile creating the guide. No firearms or other kinds of weaponsare needed in order to survive software. Just a little bit of patience.
Physical fitness plays a great part of software observation.
Be fit or CTRL-Quit.

Remember, software observation can be stressful. You might ex-perience:
AnxietySleep deprivationForgetting about eatingLoss of time tracking
Can you cope with software? You just have to.

11

Introduction 3 Warning 11 Table of Contents 12

14 Close encounters – Meetings between people, software and hard-
ware :: Encounter several historical collections of hardware back-to-back 17 Interview people about their histories with software 30 In-
terview with Jean Huens 35 Ask several people from differentfields and age groups the same question: "What is software?" 49 FMEMand /DEV/MEM 52 Pan/Monopsychism 57 Setup a Relational Soft-ware Observatory Consultancy (RSOC) 121 Hand reading 146

60 Temporality – Constellations of time and locality :: Space-NoiseRearrangements 64 I hope you are comfortable, [insert
name] 69 "Nannyware": Software that observes and addresses theuser 71 Useless scroll against productivity 79 The ends of time 85
How humans and machines negotiate the experience of
time 89

100 Languaging – Observing software as/through writing :: Quine 103Glossaries as an exercise 106 Adding qualifiers 112 Searching "soft-ware" through software 114 Persist in calling everyone a SoftwareCurious Person 116

118 Healing and embodiment – Feeling software :: Setup a Re-lational Software Observatory Consultancy (RSOC) 121 Agile SunSalutation 135 Agile Sun Salutation 141 Hand reading 146Bug reporting for sharing observations 150 When dirty.db get’s
dirty 153 Interface Détournement 156 Comportments of software(softwear) 162

164 Flows – Flow-regulation, logistics and seamlessness :: Con-tinuous Integration 167 Space-Noise Rearrangements 64 makemake do 171 Flowcharts (Flow of the chart –> chart of the flow: ondemand!) 175 What is it like to be AN ELEVATOR*? 196

188 Invasive observations – Being on the side, in the middle or be-
hind :: Something in the Middle Maybe (SitMM) 191 What is it like tobe AN ELEVATOR*? 196 Side Channel Analysis 202

206 Collections – Compiling observations :: Compiling a bestiary ofsoftware logos 208 Glossaries as an exercise 106 Encounter severalhistorical collections of hardware back-to-back 17 Testing the testbed:testing software with observatory ambitions (SWOA) 220 Prepare aReader to think theory with software 224 "Nannyware": Software thatobserves and addresses the user 71

Keyword Index 236 Bibliography 238 Colophon 242Free Art License 248

13

14

Descending into the depths of any hardware
reveals insights into the computer. 8

Admittedly, facilitating a usability study is
not a natural way to interact with other human
beings. So it is totally understandable why
most of us have trouble facilitating, making
classic mistakes such as:[. . .] Treat the test
session as a conversation rather than an
observation. Talking too much, at inappropriate
times, or leading the user can affect what he
does and says, which can invalidate part or all
of the research findings. Interviewing methods
are different from observational methods. 9

[T]he ENIAC’s “master programmer” was not a
person, but a machine component, responsible
for executing loops and linking sequences
together. That is, the master programmer
handled the “program control” signal that each
unit produced after it successfully executed a
function. 10

8 David A. Patterson and John L. Hennessy: Computer Organization and Design
MIPS Edition, Fifth Edition: The Hardware/Software Interface. English. 5 edition.Amsterdam ; Boston: Morgan Kaufmann, Oct. 2013. I S B N: 978-0-12-407726-3,pg.199 Kara Pernice: Talking with Users in a Usability Test. en. 2014. Visited on Jan. 31,201810 Wendy Hui Kyong Chun: Programmability. In: Software Studies. Ed. byMatthew Fuller. 2008, pp. 225–228. I S B N: 978-0-262-06274-9. Visited on Jan. 31,2018, pg.225

15

I participated in the hackathon much in the
spirit of a critique that had run out of steam.
I concerned myself to coconstruct knowledge —
to make a thing. Although the hackathon did
draw people together in a Latourian spirit
around a matter of concern, in a very Latourian
spirit, this actually existing site of design
practice revealed that its politics were in its
forms and norms — in its manufactured urgency,
in the distance between the studio and the
world, and the media ecologies that made it
possible to promise to cross that distance
without walking it. 11

11 Lilly Irani: Hackathons and the Making of Entrepreneurial Citizenship. en. In:
Science, Technology, & Human Values 40.5 (Sept. 2015), pp. 799–824. I S S N:0162-2439, 1552-8251. D O I: 10.1177/0162243915578486. Visited on Jan. 31,2018, pg.20

16

Encounter severalhistorical collectionsof hardwareback-to-back
HOW:: This can be done by identifying one or more computermuseums and visiting them with little time in-between. Visiting afriend with a large basement and lots of left-over computerequipment can have a similar effect. Seeing and possiblytouching hardware from different contexts (state-administration,business, research, . . .), periods of time, cultural contexts(California, Germany, French-speaking Belgium) and priceranges allows you to sense the interactions between hardwareand software development.

NOTE::This method offers a perfect opportunity to hear peoplespeak about objects in their contexts, how they worked and didnot work and how particular pieces of hardware and software arelinked one with another. It also shows the economic and culturalaspects of softwares.

WARNING::DO NOT FOLD, SPINDLE OR MUTILATE

17

XAMPLE:: Spaghetti Suitcase
At one point during the demonstration of a Bull computer at theComputer Museum NAM-IP, our museum guide revealed the sys-tem’s “software” – a suitcase sized module with dozens of patchcords. She made the comment that the term “spaghetti code”(a derogatory expression for early code that used many “GOTO”statments) had its origin in this physical arrangement of code aspatchings.
Preserving old hardware is a means of observing the physicalmanifestation of software. Operating older computers can resultin actually touching software.

XAMPLE:: Play with binary. Create punch cards.
“The highlight of the collection is a recreation of a real punch cardworkshop of the 1960s.”

18

19

20

21

22

23

24

25

XAMPLE:: Collection de la Maison des Écrituresd’Informatique & Bible, Maredsous
The Collection de la Maison des Écritures d’Informatique & Biblewas donated to NAM-IP by the Centre Informatique et Bible thatwas founded in 1979 at the Benedictine abbey of Maredsous. Thecenter was located in the “House of Scripture”, a pavilion nearthe entrance to the abbey, where biblical scholars, linguists andcomputer scientists applied computer processing to bible-textsand it’s references.
The idea of introducing informatics as a method for working withand on the Bible dates back to 1971 when it was done via punchcards and then transferred to the memory of magnetic tape. Thencame the step of analyzing texts using computers while at thesame time introducing computers to the delights of reading theBible with the help of Optical Character Recognition. The particu-larity of this collection lies in the fact that it conserves and presentsmultiple moments in the life of a text rendered into and analyzedthrough software, starting from its initial stages of computerizationand going up to contemporary forms of software.

P.30
SEE ALSO::Interview people about their histories with software

26

27

28

Machines à cartes perforées de marque Bull http://www.h
istoireinform.com/Histoire/+Infos/jmclcadr.htm

IMAGES:: Spaghetti Codes P.19 Museum guide at NAM-IP touching
software. P.21 “À la table des manipulations”, manually creating punch-
cards with the EMPUNCH model 80. P.22 TGSO Punchcards P.24 Atelier
mécanographique Bull P.25 ‘Maredsous 89. 15 ans d’Informatique et Bible’
(‘Maredsous 89. 15 years of informatics and bible’) P.27 Continuous form
paper with lexical research and a copy of the Interface Bulletin, published
by the Centre Informatique et Bible: http://www.cibmaredsous.b
e/cib3000.htm P.28

29

Interview peopleabout their historieswith software
WHAT:: Collect personal narratives around software history.Retrace the path of an individual’s relation to software, how itchanged during the years, and what human access memoriessurround it. Look at software through personal relations andemotions.

HOW:: Interviews are a good way to do it, but informalconversations work, too.

WHEN::Whenever (talking to people who are retired is a plus).

WHO::Anyone with ten years or more of any kind of experiencewith software.

URGENCY::High.

30

WARNING:: Oral histories will be lost if they are notrecorded.

Jean Heuns has been collecting servers, calculators, soft-
wares, magnetic tapes and hard disks for thirty years. He
came to an agreement with the Department of Computer Sci-
ences (KU Leuven) for them to be displayed in the depart-
ment hallways.

At the time computers were mainframes and you did feed them
with programs by punch cards. Programming was writing down
the program, then you punched it, and the next day you get results,
mostly error. That’s the way it worked at that time. To teach us
programming, they used the language of that time, Fortran, and
some kind of invented assembly langage, it didn’t really exist, it
was simplified.

As an anecdocte, I remember punchcards were a block of paper,
we were jealous of the people who came into the computer cen-
ter with huge stacks of cards. They were really small programs,
not complicated ones. In fact you had to learn to use the com-
puter from scratch, everything was new, you couldn’t rely on pre-
vious experiences. And to start with small programs was difficult
enough.

I remember the first program I had to work on. You got three num-
bers, you had to make the program decide if you can construct a
triangle with the numbers being the sides of the triangle.

31

32

How did you see the rise of personal computer and the soft-
ware that goes with it?

I have to admit that we missed it. We didn’t see that what was
new was powerful. We were not impressed by the software. I
remember Windows 95, the news on TV, people sleeping on the
street to get it. I remember when I got my first Windows version,
with a box of 22 floppies or so. Then I wanted to do something, to
compile a program, but there was no compiler.

For me software is the magic that makes computers usable.

Quotes taken from an interview with Jan Huens, see following pages.

33

34

Interview with Jean Huens

The following is a transcript of an interview with Jean Huens con-ducted by Peggy Pierrot on December 21, 2017 in an office ofDepartement Computerwetenschappen of the KU Leuven.
You have been using computers since a long time, as you
explained to us during the tour we had the joy of attending
during the TGSO. I heard that until recently, let’s say the late
1990s, that to learn computer programming you had to start
by writing down the program on paper?

In 1973, I did study computer sciences, it was the second yearof the Computer Science course, here in Leuven. At the timecomputers were mainframes and you did feed them with programsby punch cards. Programming was writing down the program,then you punched it and the next day you get results, mostly error.That’s the way it worked at that time. To teach us programming,they used the language of that time, Fortran and some kind ofinvented assembly language, it didn’t really exist, it was simplified.
Most of the time you wrote down your program, the teacher andthe assistant would have to tell you what is wrong or good, youdidn’t have much practical experience.
What was it like, tons of pages?

No. As an anecdocte, I remember punchcards came in hugestacks, we were jealous of the people who came into the com-puter center with piles of cards. They were really small programs,not complicated one. In fact you had to learn to use the com-puter from scratch, everything was new, you couldn’t rely on pre-vious experiences. And to start with small programs was difficultenough.

35

That was also the time when Edsger W. Dijkstra, who foughtagainst the goto and other common but bad constructs. 12 I stillremember him, in an audience, giving us a lecture on good tech-niques in programming at the International computing symposium1977 in Liège. 13 It was a rather hard course because Dijkstra ex-pected you to quickly understand and implement his ideas.
And then from ’75 on, computers became cheaper and could bebought by departments and smaller entities. And then came thefirst interactive computer. They were still beasts, about two cu-bic meters, costing two millions belgian francs. But it was cheapenough to allow people to type in directly commands. I startedworking here in ’75 as a researcher, it has evolved continuouslyand I saw computers getting cheaper and getting easier to use.Theway to use it was simplified, you could start to go to the beast andtry it out.
I remember more or less: you wrote down the program in Fortranfor instance. We always thought in the beginning that it wouldwork and it didn’t, so after a turn around you were giving it backto the operator and you have to wait another half a day or a nightto get the results.
What kind of program were you working on?

I remember the first program I had to write was: you got threenumbers and you had to make the program decide if you couldconstruct a triangle with the numbers being the sides of the trian-gle.

12 Edsger W. Dijkstra: A Case against the GOTO Statement. 197213 Edsger W. Dijkstra: Programming: From craft to scientific discipline. 1977

36

That took an afternoon to be processed?

Well, yeah. You had to imagine how to do it which was also oneproblem, then you prepare the cards with the punching machineand you give the package of cards to the operator who was feed-ing the computer with the cards. Operators were people who hadthe task of feeding the computers by hand, with paper cards, andthen the cards got written on disks and later processed by themainframe from disk. Finally results got printed on paper. Andafter a number of hours or a night you got a listing on a piece ofpaper with the results or program compilation errors.
When where you able to record the program onto the ma-
chine?

I think that happened between ’75 and ’80. After the punchingcards, which were already a way to record the program, we hadtypewriters and then terminals. We could record the programsby typing it on the terminal and the computer would store themon magnetic discs. IBM had number for everything, I rememberthe 3300 [manufactured from 1970 on] was a magnetic disk. Wedidn’t touch the machines, operators would change the disks, wecould only access the typewriter/terminal. That was our most di-rect connection to the computer. The times were different. Themainframes were such huge costly beasts that it had operatorsday and night to keep it busy. Even at night there were two orthree guys mounting tapes, disc mounting tapes, that kind of stuff(P.38).
When did you stop working with operators?

Somewhere between ’85 and ’90. There were still operators atthe main computer of the university, but there were also smallcomputers, so researchers and student could have direct accesswhen needed.

37

3D CG concept of an IBM 3330 Direct Access Storage Facility by Oliver Obi. http
s://commons.wikimedia.org/wiki/File:IBM_magnetic_disk_dri
ves_3330%2B3333.png

38

When did you start to work with software sold by others or
given away in order to do your research?

You still needed an operating system for the mainframe that wasdelivered by IBM or the constructor delivered the mainframe. Whenyou bought mini-computers, which were the smaller versions ofmainframes, in most cases you bought an operating systems,compilers and all the stuff you needed to be able to program orwork those things. In most cases, the computer sciences depart-ment bought the mini-computer from, for instance Digital Equip-
ment Corporation, a manufacturer at that time, but they didn’t buyDEC’s software. The DEC software was not open source or free,and as a university we could get Unix for free and could run it onthose DEC computers. That is what the computer department ofthe University of Louvain la Neuve l’unité d’informatique, did andso did we.
When did you start working with Unix as an OS?

I took a trip to Amsterdam, it must have been in 1979 or 1980.Well, the story starts in our French sister university (LLN) wherethey had a PDP-11 with Unix on it. You could get Unix, at the time,when you were a university, from Bell Labs (part of AT&T), theAmerican telephone company. AT&T was a mega organisation atthe time before the dismantlement of AT&T/Bell system 14. Dueto monopoly, the US authorities split it up into different Baby Bells.One of the restrictions was that the research Baby Bell, couldnot sell anything. There were computer scientists there who de-veloped some interesting things (e.g. Unix). Universities got thesource code for free, but NO support, nothing not even how to

14 https://en.wikipedia.org/wiki/Breakup_of_the_Bell_System

39

install it. In Unité d’informatique, where they had a PDP-11/70 15
they were lucky: they got the same computer that Unix was de-veloped on. They got the disk by snail mail as a post-office pack-age. They mounted it and it did spin up and they had Unix. Here,we had a cheaper PDP11, the PDP 11/60 16. We got the Unixdisk distribution from Bell Labs but we could not run it, becausewe got another type of disk (RK07). We could look at it but thatwas all, because our disc format was different than the one atBell Labs. Somebody here (P. Verbaeten) wrote a driver for thatdisk in l’unité d’informatique of LLN. It compiled it but we couldn’ttry it because we did not have a RKO7. The nearest place withUnix and a RK07 was in Vrije Universiteit Amsterdam. AndrewTenenbaum, who wrote a number of books on operating systems,was working there. He was learning to speak Dutch. We under-stood his English better but his assistant explained that he neededto practice speaking Dutch because he would have to pass anexam. There we compiled Unix with an RK07 driver and stored iton a bootable RK07 disk. With that disk back in Leuven we couldstart Unix on our PDP11/60. An error in the process meant a tripLeuven-Amsterdam and back. In my opinion the start of OpenSource was Unix because we had to maintain it by ourselvesand we learned a lot from the sources. In that time for softwaredistribution you had to store it on magnetic tape and send thetape to different places with associated problems. For example,the agents at the customs at the airport or post office didn’t knowwhat to do with the tapes or discs in terms of custom clearance.They used magnetic or x-rays as inspection tools and we had towrite on the package that it should not be x-rayed. And sometimeswe still got unreadable tapes/discs.

15 https://i0.wp.com/www.utterpower.com/wp-content/uploads/
2011/10/pdp11-70-panel.jpg16 https://dave.cheney.net/tag/pdp-11

40

So it took weeks between the transportation and the cus-
toms?

Yes, the custom had to clear the packages. I remember I’ve beenin the customs in Zaventem. I had received a letter that my pack-age from Bell Labs had arrived. I went there thinking I would haveto pay something and go. But no. It had to be cleared so therewas some organisation that had to do administrative stuff, so Ionly got it a few days later. The response time was huge.
After that period of time, how did you switch from that kind
of collaboration on how to make software and make software
work, to another kind of collaboration on networks and be-
tween universities and researchers?

In the Unix systems at that time there was a kind of networkingprotocol which worked on serial lines (UUCP). To connect twoUnix systems together you only need a serial line. We had a linebetween LLN and Leuven, it’s only 25 kms, but we had to askBelgacom, then La Régie des Télégraphes et Téléphones, to geta modem to connect through their network and then over that mo-dem you could reach an amazing speed of 300 characters persecond. And that was the first communication. It happened some-where around 1985. And then you had connection with anothercomputer by writing something here and doing the transfer to theother computer and executing it there.
What was the first thing you sent through a network like
this?

I didn’t do it myself, I remember it was a kind of chat program.On the LLN side was Professor Elie Milgrom. He is retired now.On this side, it was Professor Yves Willems. And I remember thatthey typed something and they got a response from the other sideand that was it. But I remember that Professor Willems sent “Ok,

41

we stop now.” And that Elie Milgrom answered “See you later,Alligator” [a reference to Bill Haley and the Comets]. At the timewe still had these kind of songs in mind. (lol). Those Unix to Unixconnexions were first. And there was a worldwide Unix to Unixbased network, Usenet (1979). It still exists somewhere.You candownload loads of illegal movies and that stuff. That was not whatwe meant at the time. But that is what is left. And Usenet becamegradually replaced by the Internet in USA. In Europe, the Internetcame a lot later, but we had limited access to the Internet bymail and even FTP; We could send mail to the Internet and wecould receive mail from them because some friendly Americanuniversity (and later companies) translated internet mail to UCPmail. Moreover they translated specially formatted mails into FTPrequest and sent the result back to us by mail. That was beforethe 1990’s.
Your relation to software had changed at the time because
you did not have to do all this manipulations with the soft-
ware your received. Was it already floppy discs?

No, magnetic tapes, for the mainframe at least. Even most of themini-computers used some (cheaper) magnetic tapes. Between1990 and 1995 the main machines used for Unix software devel-opment was a VAX from DEC. Once a year the software camefrom Berkeley. It was still Unix but had been modified by Berkeleyfor virtual memory and all the stuff which is common now. Wereceived a tape, with lot of goodies, I still remember we didn’tknow what was on the tape but we scrutinized it to find out whatwas on there, what we could use. . . In Europe, companies likeSiemens were trying to set up software centers to make softwareavaiable. They were even trying to set up European networks. Butresearchers loved the Internet. It worked. It was useful for theirresearch. So companies in Europe were trying to set up their ownnetworks, I remember for example the X/OPEN transport protocol,

42

which was a set of standards about what software layers shoulddo. But it didn’t succeed because around 1992 IBM decided toquit their own private network and to go for TCP/IP which wasthe switching point. Everything done for X/OPEN were suddentlyforgotten. For the mainframes, and certainly in Belgium comput-ing was mainly mainframes, I’m talking about universities here, sowhen IBM decided to go for TCP/IP the universities followed. Butthe adoption of TCP/IP was really slow. For example, Belgacomwas not interested in running the Domain Name System so wedid it here, for some time, starting in 1993 with Pierre Verbaten 17.Belgacom were focused on X25 (DCS - https://en.wikipe
dia.org/wiki/X.25) so they missed it.

It was like the french Minitel?

Well, at that time we were really jealous about Minitel. Could youimagine that? Terminals? At home? You could work home with acomputer! You could send emails! All in one, a PC computer witha modem!

How did the research about software evolve in the depart-
ment?

I am mainly talking about network research but here. There werepeople working on numerical analysis, computing, artificial intel-ligence. I was just not involved in that research so I don’t knowmuch about it

17 https://www.dnsbelgium.be/en/history

43

You were focused on software and networks?

Yes, we produced some software. We made software to generatecompilers. There was some A.I. software in Prolog, numericalanalysis libraries, etc. Some were sold or shared, it depends. Wesold some software from the beginning I think when it was noteven a department but a professor and a couple of students.

Is that when you joined?

No it was already a department. I studied industrial engeneeringin electronics first. At the time in electronics you heard somethingabout computers, I was interested in it. I wanted to know more. Iheard KU Leuven had started a degree in computer engineering.It was the first year where industrial engineers could join. The onlything we knew about computers were from movies. I wanted toknow how they worked. I’m not sure if I know now it now, but Ihave some ideas.

How many languages do you know?

Assembly, FORTRAN, PL-1 the language invented by IBM to bethe universal one, C, Cobol. Perl. . . I don’t know. . . some more.I’m not fluent in any computer language, but I can read any lan-guage especially well written, I know I can understand it and, ifneeded, learn it. . . I know JAVA also. As a system administrator,the thing I use most are the command line of Unix and Perl. Butthat’s because i’m more familiar with those two so it goes faster.

44

How did you see the rise of personal computer and the soft-
ware that goes with?

I have to admit that we missed it. We didn’t see the new thing waspowerful because it was available for everybody. We were notimpressed by the software. I remember Windows 95, the news onTV, people sleeping on the street to get it. I remember when I gotmy first Windows version, with a box of 22 floppies or so. ThenI wanted to do something, to compile a program, but there wasno compiler. We were used to Unix, which was a basic systembut haa lot of utilities in it. Software was for us free, and we wereused to having it be free, and on a PC it was not free anymore.
Does that mean you didn’t have a personal computer until
late?

Yes. I think it was round 2000. I didn’t need it really. I got onewhen the Belgian UUCP network became commercial. Of courseI did not get Windows on it. I think we got Linux here in 1994.There was a guy involved in the kernel studying here. So we didused it very fast.
So, what is software for you?

For me, software is the magic that makes computer usable. I canonly give examples of what I mean by it. A PC without software– most people, even computer scientists, can’t do anything withit. You need basic software. Some software is already integratedin the computer hardware. It is the same for phones, tablets. Themain characteristic, for me, is that it should be user friendly. Thatis very difficult I know, because you have to imagine what thepeople using your software are going to do with it and how theywant to use it. That’s the magic you need to solve.

45

Is command line user friendly?

Well, somehow you have to learn the Unix command language;it is in fact a computer language where you can make all theconstructs that other languages offers. You can create loops, youcan test, whatever. It’s not so different from computer languageslike C or JAVA or whatever. It is certainly programmer friendly.
But it’s already software, no? User friendly depends on what
you put behind these words, no?

Yes it’s already software. I don’t have a strong opinion aboutcommand lines. It depends on people. I can imagine that some-one that has never heard about the command line expects thatyou click somewhere and it happens. But if you know the com-mand language it’s sometimes perhaps easier or productive totype commands and let it run. Sometimes, I find it easier if I havea screen and a number of buttons and I don’t have to imaginewhat happens behind that screen. And sometimes I want to dosomething with the command line, because I’m used to it. That’swhy I don’t trust myself about user friendliness because I have along experience in computer interfaces. I’m so used to some ofthem perhaps I can’t even imagine that somebody else would liketo do it otherwise or doesn’t like what I’m used to.
Apart from maintaining the museum, what do you work on?
You are still active in the department even though you are
retired?

I work on sensors, in the Internet of Things world in one of theuniversity spin-offs. What I do for them is: wireless sensors needpower, most of them are on batteries. They have designed a com-plete system which should make the battery last for two, three,four years. They need a system to measure that. So I have been

46

working on a mechanism to measure that without waiting fouryears. That’s programming instrumentation computers to mea-sure e.g. power or whatever. Most of it on Unix systems. Thereare enough new or unknown things and maybe because I’m older,I have another way of looking at things, so we have a lot of discus-sions. They don’t like my Perl, they use Python, JAVA and thosethings. . . Perl, it has its disadvantages, but you can do a lot ofthings. Every character has a meaning, that makes Perl programsoften unreadable. With Python, you need all those libraries. . . It’seasy when you know the libraries, what you have to call. Whenyou know the arguments of the librairies. So it’s also complicated.And if the library changes for some reasons, there you go. In myhumble opinion it’s the same with all the languages. It starts easyfrom scratch but if you have to interface them with existing thingsfrom the Internet world or whatever it gets complicated.
Do you have a last word?

I was surprised by your group reaction to the visit. I thought allof this was known. Maybe I’m getting old. Currently I don’t domuch about the museum department, but sometimes I like to talkabout the little stories about it. I remember a lot of little stories, alot of techniques that have been used and forgotten, and sometechniques that have been kept alive. I thought when I was youngthat the best techniques would succeed. That you would havevisionary people who would see the way. But I realized that a lotof things happen by accident.

47

48

Ask several peoplefrom different fieldsand age groups thesame question:“What is software?”

WHAT:: By paying close attention to the answers, andpossibly logging them, observations about the ambiguous placeand nature of software can be made.

R E M E M B E R
The answer to this question will vary depending on who isasking it to whom.

49

“It is difficult to answer the question ‘what is software’, but I know
what is good software” 18

“Software is a list of sequential instructions! Hardware for me is
made of silicon, software a sequence of bits in a file. But naturally
I am biased: I’m a hardware designer so I like to consider it as
unique and special”. 19

“This, you have to ask the specialists.” 20

*what is software?

−−the unix filesystem says: it's a file

−−−−what is a file?

−−−−in the filesystem, if you ask xxd:

−−−−−− it's a set of hexadecimal bytes

−−−−−−−what are hexadecimal bytes?

−−−−−−−b it's a set of binary 01s

−−−−if you ask objdump

−−−−−−−it's a set of instructions

−−side channel researching also says:

−−−−it's a set of instructions

−−the computer glossary says:

−−−−it's a computer's program, plus the procedure for their use

http://etherbox.local/home/pi/video/A_Computer_Glossary.webm

#t=02:26

−−−−−− a computer's programs is a set of instructions for

performing computer operations

18 Jean Huens (system administrator at the department of Computer Science,KULeuven)19 Thomas Cnudde (hardware designer at ESAT - COSIC, Computer Security andIndustrial Cryptography, KULeuven)20 Amal Mahious (Director of NAM-IP, Namur)

50

Notes on fileflowchart.raw.html http://observatory.cons
tantvzw.org/etherdump/fileflowchart.raw.html

Notes on Multiple Software Axes http://observatory.con
stantvzw.org/etherdump/multiple-software-axes.m
d.raw.html

P.116
SEE ALSO::Persist in calling everyone a Software Curious Person

51

FMEM and/DEV/MEM

WHAT:: Different ways of exploring your system memory(RAM). As in unix-based systems everything can be approachedas a file, you can access your memory as if it were a file.

URGENCY::Observing the operational level of software,getting closer to its workings. Examining the instruction-being ofan executable/executing file, the way it is when it is loaded intomemory rather than when it sits in the harddisk.

52

R E M E M B E R
In Unix-like operating systems, a device file or special fileis an interface for a device driver that appears in a filesystem as if it were an ordinary file. In the early daysyou could fully access your memory via the memory de-vice (/dev/mem) but over time the access was more andmore restricted in order to avoid malicious processes fromdirectly accessing the kernel memory. The kernel optionCONFIG_STRICT_DEVMEM was introduced in kernel ver-sion 2.6 and upper (2.6.36–2.6.39, 3.0–3.8, 3.8+HEAD). Soyou’ll need to use the Linux kernel module fmem: this mod-ule creates /dev/fmem device, that can be used for ac-cessing physical memory without the limits of /dev/mem(1MB/1GB, depending on the distribution).

/dev/fmem tools to explore processes stored in the memory
ps ax | grep process

cd /proc/numberoftheprocess

cat maps

–> check what it is using
The proc filesystem is a pseudo-filesystem which provides aninterface to kernel data structures. It is commonly mounted at
/proc. Most of it is read-only, but some files allow kernel variablesto be changed.
dump to a file–>change something in the file–>dump new to afile–>diff oldfile newfile
“where am i?”

53

to find read/write memory addresses of a certain process

awk -F "-| " '$3 ~ /rw/ { print $1 " " $2}' /proc/PID/maps

take the range and drop it to hexdump
sudo dd if=/dev/fmem bs=1 skip=$((16#b7526000 - 1)) \

count=$((16#b7528000 - 16#7b7526000 + 1)) | hexdump -C

http://observatory.constantvzw.org/etherdump/fil
es.md 511-535

Besides opening the memory dump with a hex editor you can alsotry to explore it with other tools or devices. You can open it as araw image, you can play it as a sound or perhaps send it directlyto your frame-buffer device (/dev/fb0).

54

55

WARNING::Although your memory may look like/soundlike/read like gibberish, it may contain sensitive informationabout you and your computer!

Forensic and debugging tools can be used to explore andproblematize the layers of abstraction of computing.

P.57
SEE ALSO::Pan/Monopsychism

Notes on how to observe files http://observatory.const
antvzw.org/etherdump/files.html

56

Pan/Monopsychism
WHAT:: Reading and writing sectors of memory from/todifferent computers.

URGENCY::Memory, even when it is volatile, is a trace ofthe processes happening in your computer in the form of savedinformation, and is therefore more similar to a file than to aprocess. Challenging the file/process divide, sharing memorywith others will allow a more intimate relation with your andother’s computers.

ABOUT::Monopsychism is the philosophical/theologicaldoctrine according to which there exists but one intellect/soul,shared by all beings.

P.52
SEE ALSO::FMEM and /DEV/MEM
NOTE::The parallel allocation and observation of the same mem-ory sector in two different computers is in a sense the oppositeprocess of machine virtualization, where the localization of multi-ple virtual machines in one physical computers can only happenby rigidly separating the memory sectors dedicated to the differentvirtual machines.

57

WARNING::THIS METHOD HAS NOT BEEN TESTED.IT CAN PROBABLY DAMAGE YOUR RAM MEMORYAND/OR COMPUTER.

First start the fmem kernel module in both computers:
sudo sh fmem/run.sh

Then load part of your computer memory into the other computervia dd and ssh:
dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \

ssh user@othercomputer dd of=/dev/fmem

Or viceversa, load part of another computer’s memory into yours:
ssh user@othercomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \

dd of=/dev/fmem

Or even, exchange memory between two other computers:
ssh user@firstcomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \

ssh user@secondcomputer dd of=/dev/fmem

58

pan/monopsychism:

(aquinas famously opposed averroes..who's philosophy can be

interpreted as monopsychist)

shared memory

copying the same memory to different computers

https://en.wikipedia.org/wiki/Reflection_%28

computer_programming%29

it could cut through the memory like a worm

or it could go through the memory of different computers one

after the other and take and leave something there

Note-snippets and code speculations during the TGSO-worksession:
http://observatory.constantvzw.org/etherdump/fil
es.md.diff.html

59

60

[T]he railroad, which worked a revolutionary
change in civilization. It increased the tempo
of business activities [. . .] The foundation
on which our business is built is the saving of
time for all people and all industries
throughout the world, to give more time in
which to do given tasks, and to make available
more time for still further advancement and
progress. The railroads and [IBM] [. . .] have
a common mission—both function to increase
the profi ts and accelerate the progress of
business by conserving the most precious of all
commodities — T I M E." 21

The concept of time sharing was developed in
the late 1950s, mainly motivated by the aim to
make efficient use of expensive mainframe
computers by avoiding idle times. Time sharing
refers to the (seemingly) simultaneous access
of multiple users that are connected via
terminals to a central computer, technically
based on the flexible allocation of CPU time to
concurrent user processes. The first
experimental implementation, the Compatible
Time Sharing System (CTSS), was deployed at
the MIT in 1961 on an IBM 709 computer, 22

21 John Harwood: The Interface: IBM and the Transformation of Corporate Design,
1945–1976. English. 1 edition. Minneapolis, MN: Univ Of Minnesota Press, Nov.2011. I S B N: 978-0-8166-7039-0, pg.10222 Christoph Neubert: The Tail on the Hardware Dog. English. In: There is no
Software, there are just Services. Ed. by Irina Kaldrack and Martina Leeker.Lüneburg, 2015, pp. 21 –37. I S B N: 978-3-95796-055-9, pg.25

61

[M]achines have their natural cycle: the
vibrating pulses of its internal clock drives
the cycles according to which the processor
works. The time of the computer is linked to
this clock cycle, as it consists in counting
cyclical ticks. This produces a cyclical time
rhythm in the hardware, on which time
experience in the software is based. However,
time in a computer is no unique or unified
experience. Several hardware components and a
diverse collection of software organised in
layers and processes create a whole ecology of
interdependent time experiences. 23

Real time is defined as time measured from some
fixed point, either from a standard point in the
past (see the description of the Epoch and
calendar time below), or from some point
(e.g., the start) in the life of a process
(elapsed time). Process time is defined as the
amount of CPU time used by a process. This is
sometimes divided into user and system
components. User CPU time is the time spent
executing code in user mode. System CPU time is
the time spent by the kernel executing in
system mode on behalf of the process (e.g.,
executing system calls). The time 24 command

23 Hans Lammerant: How Humans and Machines negotiate the Experience of Time.201724 https://linux.die.net/man/1/time

62

can be used to determine the amount of CPU
time consumed during the execution of a
program. A program can determine the amount
of CPU time it has consumed using times 25,
getrusage 26, or clock 27. 28

25 https://linux.die.net/man/2/times26 https://linux.die.net/man/2/getrusage27 https://linux.die.net/man/3/clock28 time was written by David MacKenzie. The man page was added byDirkEddelbuettel: TIME(1) General Commands Manual

63

Space-NoiseRearrangements
WHAT:: Interventions in your working-environment.

HOW::Different strategies can be applied to temporarilyredefine the workspace and its perceptual structures.

URGENCY:: Acknowledging space and its correlated noise,as conditioning observations (the World Trade Centervs. Museum vs. University vs. Startup Office vs. Shifting Wallsthat became Water Fountains).

NOTE::EU-OSHA (European Agency for Safety and Health atWork) Directive 2003/10/EC describes the minimum health andsafety requirements regarding the exposure of workers to therisks arising from physical agents (noise). However no currentEuropean guidelines exist on the potential benefitial uses of tac-tially designed additive noise systems.
Fountain refreshment: augmenting a piece of standardized officeequipment designed to dispense water to perform a decorativeand soothing function.

64

Actual silence is not at the moment considered comfortable.
One of the visible symptoms of our desire to take the edge
off the silence can be observed through the appearance of
fountains in public space. The fountain’s purpose is to give
off neutral sound, like white noise without the negative
connotations.

NOTE::Gaining access to standardized water dispensing equip-ment turned out to be more difficult than expected as such equip-ment is typically licensed/rented rather than purchased outright.Acquiring a unit that could be modified required access to sec-ondary markets of second hand office equiment in order to pur-chase a disused model.
One-way mirrors can be used to partition your working environ-ment in a 4-dimensional way.

As the foil reacts to light, it appears transparent to someone
standing in the dark, while leaving the side with the most light
with an opaque surface. Using this foil as room dividers in a
room with a changing light, what is hidden or visible will vary
throughout the day. So will the need for comfortable silence.

These two examples of Space-Noise Rearrangements were devel-
oped by Mia Melvaer http://www.miamelvaer.com/t
echnogalactic .

65

66

67

68

I hope you are comfortable, [insert name]

For the past 100 years the western ideal of a corporate landscapehas been moving like a pendulum, oscillating between grids of cu-bicles and organic, open landscapes, in a nearly perfect 25-yearrhythm. These days the changes in office organization is supple-mented by sound design in corporate settings mostly to createcomfortable silence. Increase the sound and the space becomesmore intimate, the person at the table next to you can not imme-diately hear what you are saying. It seems that actual silence inpublic and corporate spaces has not been sought after since thestart of the 20th century. Actual silence is not at the moment con-sidered comfortable. One of the visible symptoms of our desireto take the edge off the silence is to be observed through theappearance of fountains in public space. The fountain’s purposeis to give off neutral sound, like white noise without the negativeconnotations. However as a sound engineer’s definition of noiseis unwanted sound that all depends on one’s personal relation tothe sound of dripping water.
This means that there needs to be a consistent inoffensivenessto create comfortable silence.
In corporate architecture the arrival of glass buildings were origi-nally seen as a symbol of transparency, especially loved by gov-ernmental buildings. Yet the reflectiveness of this shiny surfaceonce combined with strong light – known as the treason of theglass – was only completely embraced at the invention of one-way-mirror foil. And it was the corporate business-world that wouldcome to be known for their reflective glass skyscrapers. As thefoil reacts to light, it appears transparent to someone standing inthe dark, while leaving the side with the most light with an opaquesurface. Using this foil as room dividers in a room with a changinglight, what is hidden or visible will vary throughout the day. So willthe need for comfortable silence.

69

Disclaimer :Similar to the last 100 years of western office organisation,this fountain only has two modes:on or off
If it is on it also offers two options:cold water and hot water
This fountain has been tampered with and has not in any waybeen approved by a professional fountain cleaner. I do urge youto consider this before you take the decision to drink from thefountain.
Should you chose to drink from the fountain, then I urge youto write your name on your cup, in the designated area, for acustomised experience of my care for you.
I do want you to be comfortable.
Mia Melvaer, June 2017

70

“Nannyware”:Software thatobserves andaddresses the user

Nannyware is software meant to protect users while limiting theirspace of activity. It is software that passive-aggressively suggestsor enforces some kind of discipline. In other words, create a formof parental control extended to adults by means of user experi-ence/user interfaces.
Nannyware is a form of Content-control software: software de-signed to restrict or control the content a reader is authorised toaccess, especially when utilized to restrict material delivered overthe Internet via the Web, e-mail, or other means. Content-controlsoftware determines what content will be available or be blocked.

71

[. . . Restrictions] can be applied at various levels: a
government can attempt to apply them nationwide (see
Internet censorship), or they can, for example, be applied by
an ISP to its clients, by an employer to its personnel, by a
school to its students, by a library to its visitors, by a parent
to a child’s computer, or by an individual user to his or her
own computer. 29

Unlike filtering, accountability software simply reports on
Internet usage. No blocking occurs. In setting it up, you
decide who will receive the detailed report of the computer’s
usage. Web sites that are deemed inappropriate, based on
the options you’ve chosen, will be red-flagged. Because
monitoring software is of value only “after the fact”, we do
not recommend this as a solution for families with children.
However, it can be an effective aid in personal accountability
for adults. There are several available products out there. 30

29 Wikipedia contributors: Content-control software — Wikipedia, The Free
Encyclopedia. 201830 TechMission UrbanMinistry.org: SafeFamilies.org | Accountability Software:
Encyclopedia of Urban Ministry. 2018

72

As with all new lifestyle technologies that come along, in the
beginning there is also some chaos until their impact can be
assessed and rules put in place to bring order and respect
to their implementation and use in society. When the
automobile first came into being there was much confusion
regarding who had the right of way, the horse or the car.
There were no paved roads, speed limits, stop signs, or any
other traffic rules. Many lives were lost and much property
was destroyed as a result. Over time, government and
society developed written and unwritten rules as to the
proper use of the car. 31

Disadvantages of explicit proxy deployment include a user’s
ability to alter an individual client configuration and bypass
the proxy. To counter this, you can configure the firewall to
allow client traffic to proceed only through the proxy. Note
that this type of firewall blocking may result in some
applications not working properly. 32

The main problem here is that the settings that are required
are different from person to person. For example, I use
Workrave with a 25 second micropause every two and a half
minute, and a 10 minute restbreak every 20 minutes. I need
these frequent breaks, because I’m recovering from RSI.
And as I recover, I change the settings to fewer breaks. If
you have never had any problem at all (using the computer,
that is), then you may want much fewer breaks, say 10
seconds micropause every 10 minutes, and a 5 minute
restbreak every hour. It is very hard to give proper
guidelines here. My best advice is to play around and see
what works for you. Which settings “feel right”. Basically,
that’s how Workrave’s defaults evolve. 33

31 Content Watch Holdings, Inc.: Protecting Your Family. 201832 websense.com: Explicit and transparent proxy deployments. 201233 workrave.org: Frequently Asked Questions. 2018

73

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago)
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)

Today

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)
caa2bae – refactor rendering code, add an options object for confi (24 hours
ago)
f7c1786 – twitter helper returns what account the tweet is from (24 hours ago)
585af3b – make standup helper care about days (24 hours ago)

Week

Commits

today week

13 24

please remember to breathe deeply
+------------------------------------+

+------------------------------------+
| |

In San Francisco, CA it's 16C and mostly sunny
right now. Today, it will be mostly cloudy with
the forecasted high of 18 and a low of 11.

Not sure how to meditate? Maybe download a
mindfulness app for your phone!

A Tamil busboy hears of a beehive located inside an
emerald, and devotes her life to finding it.

tiny-termina -care — tiny care terminal — node care.js — 164x42

\
 \
 \

Siempo is a new phone that is designed to help you

reclaim control over your time and attention.

It features all the essentials like calling, texting, wi-fi
hotspot and maps, while limiting access to the

services that tend to interrupt us throughout the day.

The Mindful Morning feature helps you create a

distraction-free morning routine and the dedicated

Pause button helps you hit mute on the digital world

for a set period of time.

We're launching shortly — sign up below to be the first

in line for Siempo

Siempo

Gesponsord

Always get plenty of sleep, if you can

– Your friends at Slack

OKCancel

Listening at a high volume for
a long time may damage your
hearing. The volume will be
increased above safe levels.

Only 24 oz to go!
You've logged 40oz

Saturday 9 May 2015

7:59 PM

64 oz
Daily Goal

64 oz
Goal by 5:00 PM

Carrier

Edit Drinks

Shoulder-arm stretch

Rest break

Keep one arm horizontally stretched in front of

your chest. Push this arm with your other arm

towards you until you feel a mild tension in

your shoulder. Hold this position briefly, and

repeat the exercise for your other arm.

Exercises player:

Rest break for 9:40 minutes

Lock Skip Postpone

11% 11:55

Search

GoBack Do Anyway!

Uh, this is being posted publicly.

Are you sure you want your boss

and your mother to see this?

Hi, this is my site and I'm asyndicated columnist in papersacross the U.S. and Canada. Theword was in a piece critical of

Access Denied

Forbidden Keyword pedophillia!

SiteCoach thinks this website contains content harmful to

a young public. The page was blocked!

OK Send

Reason:

Please provide us a brief comment, if you believe that this

webpage has been blocked wrongly

SiteCoach content filter

provisio.com

kiosks.org

public.ch

browser.de

software.nz

terminal.info

digital.be

publicinternet.fi

sitedfdsff.net

74

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago)
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)

Today

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)
caa2bae – refactor rendering code, add an options object for confi (24 hours
ago)
f7c1786 – twitter helper returns what account the tweet is from (24 hours ago)
585af3b – make standup helper care about days (24 hours ago)

Week

Commits

today week

13 24

please remember to breathe deeply
+------------------------------------+

+------------------------------------+
| |

In San Francisco, CA it's 16C and mostly sunny
right now. Today, it will be mostly cloudy with
the forecasted high of 18 and a low of 11.

Not sure how to meditate? Maybe download a
mindfulness app for your phone!

A Tamil busboy hears of a beehive located inside an
emerald, and devotes her life to finding it.

tiny-termina -care — tiny care terminal — node care.js — 164x42

\
 \
 \

Siempo is a new phone that is designed to help you

reclaim control over your time and attention.

It features all the essentials like calling, texting, wi-fi
hotspot and maps, while limiting access to the

services that tend to interrupt us throughout the day.

The Mindful Morning feature helps you create a

distraction-free morning routine and the dedicated

Pause button helps you hit mute on the digital world

for a set period of time.

We're launching shortly — sign up below to be the first

in line for Siempo

Siempo

Gesponsord

Always get plenty of sleep, if you can

– Your friends at Slack

OKCancel

Listening at a high volume for
a long time may damage your
hearing. The volume will be
increased above safe levels.

Only 24 oz to go!
You've logged 40oz

Saturday 9 May 2015

7:59 PM

64 oz
Daily Goal

64 oz
Goal by 5:00 PM

Carrier

Edit Drinks

Shoulder-arm stretch

Rest break

Keep one arm horizontally stretched in front of

your chest. Push this arm with your other arm

towards you until you feel a mild tension in

your shoulder. Hold this position briefly, and

repeat the exercise for your other arm.

Exercises player:

Rest break for 9:40 minutes

Lock Skip Postpone

11% 11:55

Search

GoBack Do Anyway!

Uh, this is being posted publicly.

Are you sure you want your boss

and your mother to see this?

Hi, this is my site and I'm asyndicated columnist in papersacross the U.S. and Canada. Theword was in a piece critical of

Access Denied

Forbidden Keyword pedophillia!

SiteCoach thinks this website contains content harmful to

a young public. The page was blocked!

OK Send

Reason:

Please provide us a brief comment, if you believe that this

webpage has been blocked wrongly

SiteCoach content filter

provisio.com

kiosks.org

public.ch

browser.de

software.nz

terminal.info

digital.be

publicinternet.fi

sitedfdsff.net

75

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago)
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)

Today

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)
caa2bae – refactor rendering code, add an options object for confi (24 hours
ago)
f7c1786 – twitter helper returns what account the tweet is from (24 hours ago)
585af3b – make standup helper care about days (24 hours ago)

Week

Commits

today week

13 24

please remember to breathe deeply
+------------------------------------+

+------------------------------------+
| |

In San Francisco, CA it's 16C and mostly sunny
right now. Today, it will be mostly cloudy with
the forecasted high of 18 and a low of 11.

Not sure how to meditate? Maybe download a
mindfulness app for your phone!

A Tamil busboy hears of a beehive located inside an
emerald, and devotes her life to finding it.

tiny-termina -care — tiny care terminal — node care.js — 164x42

\
 \
 \

Siempo is a new phone that is designed to help you

reclaim control over your time and attention.

It features all the essentials like calling, texting, wi-fi
hotspot and maps, while limiting access to the

services that tend to interrupt us throughout the day.

The Mindful Morning feature helps you create a

distraction-free morning routine and the dedicated

Pause button helps you hit mute on the digital world

for a set period of time.

We're launching shortly — sign up below to be the first

in line for Siempo

Siempo

Gesponsord

Always get plenty of sleep, if you can

– Your friends at Slack

OKCancel

Listening at a high volume for
a long time may damage your
hearing. The volume will be
increased above safe levels.

Only 24 oz to go!
You've logged 40oz

Saturday 9 May 2015

7:59 PM

64 oz
Daily Goal

64 oz
Goal by 5:00 PM

Carrier

Edit Drinks

Shoulder-arm stretch

Rest break

Keep one arm horizontally stretched in front of

your chest. Push this arm with your other arm

towards you until you feel a mild tension in

your shoulder. Hold this position briefly, and

repeat the exercise for your other arm.

Exercises player:

Rest break for 9:40 minutes

Lock Skip Postpone

11% 11:55

Search

GoBack Do Anyway!

Uh, this is being posted publicly.

Are you sure you want your boss

and your mother to see this?

Hi, this is my site and I'm asyndicated columnist in papersacross the U.S. and Canada. Theword was in a piece critical of

Access Denied

Forbidden Keyword pedophillia!

SiteCoach thinks this website contains content harmful to

a young public. The page was blocked!

OK Send

Reason:

Please provide us a brief comment, if you believe that this

webpage has been blocked wrongly

SiteCoach content filter

provisio.com

kiosks.org

public.ch

browser.de

software.nz

terminal.info

digital.be

publicinternet.fi

sitedfdsff.net

76

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago)
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)

Today

/Users/noms/Code/tiny–terminal–care

6889476 – update the readme (11 seconds ago)
93d0426 – refactor settings bit (3 minutes ago)
2b440fa – add a backup scraping option (9 minutes ago)
eac7fdf – it's ok if the api keys aren't setup (20 hours ago)
d75de24 – update readme (20 hours ago)
8f98ce4 – add a config file and do some cleanup (21 hours ago)
c5a7d0e – oops dependencies what are they even (22 hours ago)
7d9258b – try a 20min interval (22 hours ago)
98ab797 – update description (22 hours ago)
68c07c7 – add party parrot and weather! (22 hours ago)
b2e9820 – index on master: eea1452 longer commit bar (23 hours ago
eea1452 – longer commit bar (23 hours ago)
0693a6e – bar graph for number of commits (24 hours ago)
caa2bae – refactor rendering code, add an options object for confi (24 hours
ago)
f7c1786 – twitter helper returns what account the tweet is from (24 hours ago)
585af3b – make standup helper care about days (24 hours ago)

Week

Commits

today week

13 24

please remember to breathe deeply
+------------------------------------+

+------------------------------------+
| |

In San Francisco, CA it's 16C and mostly sunny
right now. Today, it will be mostly cloudy with
the forecasted high of 18 and a low of 11.

Not sure how to meditate? Maybe download a
mindfulness app for your phone!

A Tamil busboy hears of a beehive located inside an
emerald, and devotes her life to finding it.

tiny-termina -care — tiny care terminal — node care.js — 164x42

\
 \
 \

Siempo is a new phone that is designed to help you

reclaim control over your time and attention.

It features all the essentials like calling, texting, wi-fi
hotspot and maps, while limiting access to the

services that tend to interrupt us throughout the day.

The Mindful Morning feature helps you create a

distraction-free morning routine and the dedicated

Pause button helps you hit mute on the digital world

for a set period of time.

We're launching shortly — sign up below to be the first

in line for Siempo

Siempo

Gesponsord

Always get plenty of sleep, if you can

– Your friends at Slack

OKCancel

Listening at a high volume for
a long time may damage your
hearing. The volume will be
increased above safe levels.

Only 24 oz to go!
You've logged 40oz

Saturday 9 May 2015

7:59 PM

64 oz
Daily Goal

64 oz
Goal by 5:00 PM

Carrier

Edit Drinks

Shoulder-arm stretch

Rest break

Keep one arm horizontally stretched in front of

your chest. Push this arm with your other arm

towards you until you feel a mild tension in

your shoulder. Hold this position briefly, and

repeat the exercise for your other arm.

Exercises player:

Rest break for 9:40 minutes

Lock Skip Postpone

11% 11:55

Search

GoBack Do Anyway!

Uh, this is being posted publicly.

Are you sure you want your boss

and your mother to see this?

Hi, this is my site and I'm asyndicated columnist in papersacross the U.S. and Canada. Theword was in a piece critical of

Access Denied

Forbidden Keyword pedophillia!

SiteCoach thinks this website contains content harmful to

a young public. The page was blocked!

OK Send

Reason:

Please provide us a brief comment, if you believe that this

webpage has been blocked wrongly

SiteCoach content filter

provisio.com

kiosks.org

public.ch

browser.de

software.nz

terminal.info

digital.be

publicinternet.fi

sitedfdsff.net

77

This method was developed by Silvio Lorusso, and presented
during the worksession. Excerpts taken from his presentation
(and related websites): A Constellation of -Wares, Some Thoughts
on Mandatory Entrepreneurialism, Work Ethic Dystopia, Psycho-
Cybernetics, Nannyware, and the Rhetoric of Software. The full
source can be found at: https://cryptpad.fr/slide/#/1/
view/p8EiphzdeHeVf1yI3NJGEQ/hWWCDdvOB+ulWbxgpk9
Y9Q2ixCSShE8TQRxjRoM80aA/

78

Useless scrollagainst productivity

<
useless scroll against productivity

This method was discovered at the end of an etherpad that contained
collective notes from the Technogalatic Observation sessions taking
place on Friday 8 June, 2017. http://observatory.const
antvzw.org/etherdump/friday.md.diff.html

83

84

The ends of time

WHAT:: Command line scripts to investigate computer clocks,system cycles, and software temporalities.

XAMPLE:: Sundial Time Protocol Group tweaks
printf 'Current Time in Millennium Unix Time: '

printf $((2147483647 - `date +%s`))

echo

sleep 2

echo $((`cat ends-of-times/idletime` + 2)) \

> ends-of-times/idletime

idletime=`cat ends-of-times/idletime`

echo

figlet "Thank you for having donated 2 seconds to \

our ${idletime} seconds of collective SSH pause "

echo

echo

85

XAMPLE:: The Year 2038 problem 34

Exact moment of the epoch: 03:14:07 UTC on 19 January 2038
local UNIX time of this machine
date +%s

UNIX time + 1
echo $((`date +%s` +1))

XAMPLE:: Goodbye unix time
while :

do

sleep 1

figlet $((2147483647 - `date +%s`))

done

P.89
SEE ALSO::How humans and machines negotiate the experience of time

P.79
SEE ALSO::Useless scroll against productivity

34 https://en.wikipedia.org/wiki/Year_2038_problem

86

Method extracted from notes on the ends of time. http://o
bservatory.constantvzw.org/etherdump/ends-of-tim
e.html On the following pages a reflection by Hans Lammerant,
How humans and machines negotiate the experience of time.

87

88

How humans and machines negotiate the
experience of time
The experience of time is an essential element of any form ofexperience or cognition. Emotions depend to a large extent on ex-pectations, or the potential coming of a future event. Any observ-ing or experience of difference, of presence related to an earlier orlater absence, is linked with an experience of time. However, howthe actual experience of time is shaped is strongly influenced byall sort of design decisions and implementations, both for humansand machines. Also, the experience of time is a conglomerate ofdifferent experiences: time as a common moment, the durationof a certain time, time as cyclic events, historical time, and so on.Researching how humans and machines experience time and ne-gotiate their time experiences is therefore an interesting avenueto explore
Humans have developed a time experience which was linked tonatural life cycles, but it has been influenced by both technologyand social conditions. The first time cycle is the day-night time cy-cle. Humans do their stuff during the day, but need to sleep. Thenight is generally the preferred time for sleep, but the availabilityof artificial light and the need for long-distance coordination hasinfluenced how humans deal with the day cycle and the place forsleep in it. Part of this experience is measuring time. Early timemeasurement was linked to observation of natural conditions likesunrise and sunset. Measurement of such sun cycles (which isin fact an earth cycle) through sundials allowed for more precisetime referencing, but it is very place and season dependent. Morelight during summer than winter implied that hours were longerin summer than in winter. Similarly such changes were greaterat higher latitudes, while near the equator such changes are lim-ited. In other words, time measured by sundials provided a localcommon reference of time, but not one common time over longerdistances.

89

This seasonal time experience when the human world was flatreflects the unknown spherical geometry of the earth cycle pro-jected on the flat earth. When humans became aware of earthas a sphere, they responded by flattening and linearising time.Mechanical clocks allowed for the unification of time lengths andthereby also standardized time. Physical observation and all sortsof economic processes needed such standardized time measure-ment. Early versions of such time measurement, like hourglasses,existed but remained disconnected from day time measurement.Mechanical clocks also allowed for the unification of differenttime cycles and scales and for the standardization of time overlonger distances, departing from the local sundial time to timezones, which were less strictly linked to the seasonal rhythm ofthe sun and more to geographical zones. Long distance trade,industrialization and later long distance communication by electro-magnetic signals (comparable to the speed of light) demandedmore geographical coordination. In the nineteenth century, coor-dination developed through clock networks, with a master clockdriving the slave clocks. Nowadays we work with atomic clocksand a global Coordinated Universal Time or UTC as a referenceto which geographical time zones are connected. Humans orga-nize their activities accordingly, if necessary by de-linking from thesolar rhythm. The borders of time zones diverge very often fromthe longitudinal lines for economic and political reasons. A simi-lar socialization and globalization of time occurred for computers.Where in the early computer age time was set and counted locallyby each machine, it is now common to continuously synchronizetime over the Internet through time servers and the Network TimeProtocol. Humans get woken, cron jobs get triggered, precisionbombs get guided, and trains count their delays in measure withthe drill signal of the Master Clock of the US Naval Observatory,only differing by tiny variations in latency times.

90

Humans have also developed ways to relate to time on longerscales, which were originally linked to natural rhythms: years, lifecycles. Calendar systems are used to determine seasonal agricul-tural needs (when to plant, when to harvest), while they also makeit possible to keep track of life cycles and historical time. Again,such calendar systems have been very diverse and local, but havebeen slowly fused to a couple of dominant models. Generationalor birth, life, and death rhythms, originating from the human expe-rience, have been projected on all sorts of phenomena. Religionstried to explain the origin of everything, while also often predictingthe end in apocalyptic visions. The demise of religion at the handof science did not let such generational visions disappear. Theygot new expressions in scientific theories of the beginning (bigbang, evolution) and end (the heath death of the universe, the endof the earth at the final burnout phase of the sun) of everything.Similar apocalyptic visions are now embedded through techno-logical design decisions (Y2K, the end of Unix-time in 2038). Inall versions the end is often linked to the specific design of time(e.g. the end of the Maya calendar, millenarian movements). Butjust like religious visions can extend their apocalypse in a newversions (e.g. the always near but always delayed apocalypse ofthe Saints of the last days), machinic accounts of time can alwaysbe extended by enlarging the bit size of the time range (cfr the ex-tension of Unix time till AD 292277026596, or safely after the endof the observable universe according to contemporary physics).

The time(s) of the machine

Machines also have their natural cycle: the vibrating pulses ofthe internal crystal clock drives the cycles according to which theprocessor works. All PCs have such a Real Time Clock (RTC),independent of the processor. The time of the computer is linkedto this clock cycle, as it consists of counting cyclical ticks. This

91

produces a single cyclical, and completely linear, time rhythm inthe hardware. In contrast to the earthly or natural cycles it is with-out any seasonal difference or interference between several cy-cles. This makes a computer into a monadic time capsule, dis-connected from the outside rhythms. The time experience in thesoftware is in principle based on this local time cycle. However,once computers and software gets linked and networked, theyhave to negotiate and synchronize their times. To start, time in acomputer is no unique or unified experience. Several hardwarecomponents and a diverse collection of software organised in lay-ers and processes create a whole ecology of interdependent timeexperiences. The operating system experiences other softwarecomponents, and users through them, as a bunch of processesscreaming for attention. One of the most pushy interrupts is thetimer forcing the processor to count another click and update thesystem time. An internal kernel process performs the negotiationof time through which the clock count is linked with a system time.This starts already during the booting process, when the operat-ing system is determining the clock signal frequency. PCs haveanother time-measuring device, the Programmable Interval Timer(PIT), which can be set by the processor at a defined frequency.During a short time indicated by this PIT, the clock cycles of theRTC get counted and the frequency of the RTC gets calculated.Several other timing devices are present in the hardware, synchro-nized by kernel processes into a range of times available for theoperating system and the processes. As said, one of these timesis avail able as system time and gets communicated to all otherprocesses when demanded. With the advent of the Internet, com-puters are not monads anymore, but are socialized in the commonrhythm broadcasted with the Network Time Protocol. The localsystem time serves as back up, but gets continuously adapted tothe network time. On a Ubuntu/Debian machine these times canbe checked with timedatectl status. The timedatectl command

92

enables to change these synchronisation processes. The actualsynchronisation is done by the timesyncd process and the timeservers to be used can be set in the /etc/systemd/timesyncd.conffile. Other Linux flavours work with the older ntp process whichcan be configured in /etc/ntp.conf.
The actual process time is completely different from this systemtime. Most of the time is in the process of making time to do it.Most of the time processes are put on hold and when the sched-uler gives them time they can proceed till the next on hold is forcedto make time for another process. The scheduler is the big orga-nizer of time in the internal ecology of processes. System timeis externally counted and therefore an external global variable tothese processes. They can all send a demand to the kernel to getthe system time. This gets communicated through the softwarestack with a range of system calls of the kernel and through thespecific time modules of the programming language the softwareis programmed in. The difference between the actual processtime and system time does not appear in how time is perceivedby the process. The process only perceives time as the differencebetween two demands of system time and is oblivious of its timebeing put on hold. The processor on the other hand spent most ofits processing time as idle time: a processor is doing time waitingfor slow system components like memory and even slower harddrives and network connections to respond and switches betweenchecking for responses of these laggards. L’enfer du temps perdu,ce sont les autres.
Connecting computers into a network demands new negotiationsof time. We have already mentioned the networked and globalisedUTC timekeeping. But temporal negotiations happen on all levelsof the system. Network protocols have timed choreographies tomake connections and proceed with communications, with timeout fail-safes to break off when something goes wrong. The timing

93

of an action is an essential component making the difference be-tween a meaningful signal and noise. Using a browser over httpto connect to a website, or more accurately the server providingthe website on your request, is a process built on a discontinuoustime practice. In a REST architecture the server just deals with aqueue of requests and does not see continuity over time betweencertain requests from a single user. New temporal practices havebeen designed and technically implemented. Through cookies,the server is able to recognise users and their state in time. Theborder between your computer and servers on the internet be-comes fuzzy when external software is dropped on your computerand runs in your web browser. Javascript modules get droppedon your computer and can start performing tasks on demand ofan external server, be it rendering a graph or mining digital money.Similarly, the browser becomes a border where time gets nego-tiated through synchronization processes. What time exactly isdepends on the task at hand. Each tool contains its specific tem-poral practices, dependent on the speed and subject matter of thesynchronization process needed. For example, for collaborativedocument editing tools like Google Docs or Etherpad it is a se-quence of versions of the document. A range of strategies havebeen developed to synchronize the changes made by differentusers with the least amount of conflict. The Easysync-protocolused by Etherpad constructs a document from changesets. Achangeset details the edits made by a user or the difference withthe former local version of the text. In other words, the flow oftime is represented through a series of changesets which canbe summed to the present state. The server keeps a sequenceof acknowledged changesets. These acknowledged changesetsrepresent the current common state and get communicated to allclients. Locally each client builds its present state by summingup the acknowledged changesets received from the server, andwith the local changesets which are not yet acknowledged. Eachclient communicates its local changesets, every 500 ms after the

94

latest acknowledgment. As this changeset can be relative to anearlier version the server first recalculates a changeset relativeto the current version. Then it sends an acknowledgment to thesender and the changeset to the other clients. Different collabo-rative document editing tools use different methods to deal withconflicts, which also are dependent on the purpose or content ofthe document. Conflicts between numeric edits in a collaborativespreadsheet are dealt with differently than conflicts between textedits. But what is common to both is that the present gets con-tinuously constructed both on the server and on the clients andnegotiated through the specific protocol. The user can alwaysaccess its local copy of the text and create its local present, butthis local present then gets negotiated with the server to create acommon present. And every tool rings also its own disasters andapocalyptic experiences through the collapse of the negotiationprocess and thereby of the common state.

This negotiation of time is in the first place a negotiation of thepresent. But also what is past and future gets constructed in thispresent. The ordered sequence connected to the system time(s)already imply such a past and future. But the construction of apast consists also of a negotiation of what remains and what getsforgotten. Data gets stored in memory or written to storage de-vices, while the operating systems assigns time stamps to thesetraces of the present becoming past and writes other traces toa range of log files. As writers trying to capture their stream ofconsciousness already experienced, it is impossible to completelystore the present for future use as past. There will always be aremainder that escapes and can not be written down. Similarly, anoperating systems can not keep a log of all its operations withoutgetting stuck in an infinite regress in which it tries to log its loggingoperations. What will be the past for a future present needs to beconstructed and selected. Everything else gets forgotten. Linux

95

stores its logs in /var/log, while all sorts of programs can createtheir own logs. All these logs are specific histories, for exampleof what programs got installed. To get an idea of your past on aLinux system in the file system, you can collect the timestamps ofall files with:
os.system("ls -R -l --time-style=long-iso \

> modlistsystem-long-iso.txt")
os.system("ls -R -lu --time-style=long-iso \

> accesslistsystem-long-iso.txt")

Renegotiating time with your computer: sundial
network time.

Technology has been a tool through which humans create dis-tance from natural cycles and design their own time experiences.This means we can critically intervene in the functioning of thetechnology and develop alternative time practices and experi-ences. As an example we put forward as a not-yet-existing-proofof concept the possibility to let the computer work according tosundial time. Is it possible to reconfigure the time of the computerand rewire the connections with human and natural rhythms?Would we be able to let the computer function in an older hu-man time experience, e.g. the time of the sundial? How can suchsundial experience be built into the system and what would be theimpact on the user? Sundial time is a geographically and season-ally localised time. It also includes a distinction between day andnight. The night is ‘out of time’. This distinction has been extra-dited from linear time practices, where the amount of light is justa variable external to steady beat of time. Linear time turns thenight into economically productive time. Running your computeron sundial time re-introduces the night in your system.

96

An intervention to introduce sundial time in your computer is pos-sible in the whole range of places we discussed where time getsnegotiated. The most fundamental but also most difficult routewould be to exchange the clock with something reflecting a morenatural rhythm. However, as we have seen that this clock has be-come only a back up tool and that the actual system time is alwaysrenegotiated with other systems connected through the network,another renegotiation process can be introduced. Therefore, themost easy way to introduce sundial time would be to reconfig-ure the timesyncdor ntp processes and make them listen to analternative sundial time server. Such a sundial time server canbe built in different ways. A hardware version can be made ofa sundial combined with light sensors, measuring the location ofthe shadow through the difference in light and deriving the sun-dial time from this location. This would link the time server to theactual earthly day and night cycle. A simulated version could bea local piece of software which looks up the timing of sunrise andsunset at the specific location and day. Based on this informationit recalculates the local sundial time, which it provides throughthe NTP protocol. The local computer receives this sundial timefrom the nearest sundial time server and continuously adapts itssystem time, as it does now already based on UTC. Further, itcan be programmed to go into sleep modus during the night andto wake up only when a sunrise signal is received from the timeserver.
Letting a computer run on sundial time is a conscious effort todisconnect it from human-made linear time and to reconnect itwith the old earth-driven cycles and the ancient time experienceby humans. The unified time of UTC and the time zones getsbroken up into extremely localized time servers, and the differ-ence between day and night gets introduced into the functioningof the computer. This re-enactment of such cycles through thecomputer will remind human users that the experience of time

97

is a socially negotiated and technically implemented experience.Further, a computer running on sundial time would be a greatpiece of nannyware nudging the user to live in harmony with hisnatural environment and a synchronization tool to re-establishthe link between the users bio-rhythm and the earthly day andnight cycle. It would also be a great reminder why humans triedin the first place to escape from these earthly rhythms throughtechnology and started hacking time.
Hans Lammerant, June 2017 - January 2018
NOTE:: This text was written in and in resistance/conflict toWTC time, which is exemplary for the bureaucratic office time ex-perience. The WTC building boots up at 9AM and is turned offin several steps (at 5PM the air conditioning is turned off, laterentrances close) into a wake state. The concierge can let you inand out through the night side entry, but main life support systemsremain turned off outside office hours. This wake state continuesduring the weekend, turning the building into a glass house withlimited air in storage. On Monday morning this bureaucratic timecapsule revives from its slumber. A suffocating experience, but ac-tually the building is a great piece of nannyware nudging towardsa healthy office rhythm without too much extra hours outside theherd work ethic.
Such office time can also be implemented and negotiated on yourlocal computer. A small Proof of Concept was the adapted bashrcon the etherbox simulating a system getting bored and stealingtime. This can be further developed by including a differentiatedresponse during versus outside office hours, aging (slower whentimestamp of original install is more remote in time), etc.

98

99

100

Motivation:
- capitalism as sorcery (Isabelle Stengers): we
are under the black magic of capitalist
wor(l)d making
- reclaim a power of saying: we have the
feeling that some words are imposed on us 35

She is in search of “a different alphabet, a
different language,” a means of communication
which would be "constantly in the process of
weaving itself, at the same time ceaselessly
embracing words and yet casting them off to
avoid becoming fixed, immobilized. 36

It is surprising how rarely language appears in
the list of relevant programming metaphors,
despite periodic attempts to envisage program
code as a form of literary expression. It is as
if we have become so accustomed to think of
programming languages as languages - that we
forget that this analogy has its own history. 37

35 Techno-Galactic Software Observatory: Notes from the Observatory on glossaries
and vocabularies. 201736 Sadie Plant: Zeroes and Ones: Digital Women and the New Technoculture. English.1st edition. New York: Doubleday, Sept. 1997. I S B N: 978-0-385-48260-8, pg.14037 David Nofre, Mark Priestley, and Gerard Alberts: When Technology Became
Language: The Origins of the Linguistic Conception of Computer Programming,
1950–1960. en. In: Technology and Culture 55.1 (Mar. 2014), pp. 40–75. I S S N:1097-3729. D O I: 10.1353/tech.2014.0031. Visited on Jan. 31, 2018, pg.43

101

We write on paper, but we write to a magnetic
disk (or tape). Part of what the preposition
contributes here is a sense of interiority;
because we cannot see anything on its surface,
the disk is semantically refigured as a
volumetric receptacle, a black box with a
closed lid. If we were writing on the disk we
would be able to see the text, like a label.
Instead, the preposition of choice, “to,”
becomes a marker for our intuition that the
verb “write” is not altogether appropriate, a
rough fit at best. 38

Just as freedom of speech is a convenient myth
under which something else entirely can safely
be left to occur, the ideal of a word processor
is that it creates an enunciative framework
that remains the same whether what is being
written is a love letter or a tax return. What
kind of language is the language of Word? 39

38 Matthew Kirschenbaum: Extreme Inscription: Towards a Grammatology of the Hard
Drive. In: TEXT Technology 2 (2004). Visited on Jan. 31, 2018, pg.10139 Matthew Fuller: Behind the Blip: Essays on the Culture of Software. English.Brooklyn, NY: Autonomedia, Mar. 2003. I S B N: 978-1-57027-139-7, pg.146

102

Quine
WHAT:: A program whose function consists of displaying itsown code. Also known as “self-replicating program.”

WHY::Quines show the tension between “software aslanguage” and “software as operation.”

HOW:: By running a quine you will get your code back. Youmay choose to go a step further and wonder about functionalityand aesthetics, uselessness and performativity, data and code.

XAMPLE:: A quine (Python). When executed it outputs thesame text as the source:

s = 's = %r\nprint(s%%s)'

print(s%s)

XAMPLE:: A oneline unibash/etherpad quine, created duringrelearn 2017:

103

wget -qO- "http://192.168.73.188:9001/p/quine/export/txt" | \

curl -F "file=@-;type=text/plain" \

"http://192.168.73.188:9001/p/quine/import"

The encounter with quines may deeply affect you. You may wantto write one and get lost in trying to make an ever shorter andmore elegant one. You may also take quines as point of departureor limit-ideas for exploring software dualisms.
“A quine is without why. It prints because it prints. It pays no atten-tion to itself, nor does it asks whether anyone sees it.”“Aquine is aquine is aquine.”Aquine is not a quine.This is not aquine.

R E M E M B E R
Although seemingly absolutely useless, quines can be usedas exploits.

Exploring boundaries/tensions
databases treat their content as data (database punctualization)some exploits manage to include operations in a database

P.57
SEE ALSO::Pan/Monopsychism

104

This method is part of Aquine, a discussion of and research into
dualism in software. Notes: http://observatory.constantvz
w.org/etherdump/auqinas.diff.html

105

Glossaries as anexercise
WHAT:: Using the technique of psychoanalytic listening tocompile (gather, collect, bring together) a list of keywords forunderstanding software.
HOW::Create a shared document that participants can addwords to as their importance emerges. To do pyschoanalyticlistening, let your attention float freely, hovering evenly, over aconversation or a text until something catches its ear. Write downwhat your ear/eye catches. When working in a collective contextinvite others to participate in this project and describe thepractice to them. Each individual may move in and out of thismode of listening according to their interest and desire and mayadd as many words to the list as they want. Use this list to createan index of software observation.
URGENCY::Not creating and troubling categories on aregular basis risks path determinacy.

NOTE::Do not remove someone else’s word from the glossaryduring the accumulation phase. During the editing phase (whichcomes after the conclusion of the accumulation phase and is ide-ally conducted through collective consensus), you can mark themfor attention. If possible, keep traces of those terms nominatedfor removal or merging.
NOTE::There was no consensus regarding the preceding note.

106

WARNING::This method is not exclusive to and was notdeveloped for software observation. It may lead to aware-ness of unconscious processes and to shifts in structures offeeling and relation.

Notes on vocabulary http://observatory.constantvzw.
org/etherdump/vocabulary.md.diff.html

107

Agile
Aquine
Authority
Attack
Bash
Battery
Beast
Bestiary
Bounce
Bug
Clouds
Code
Colonial
Comfortable
Command Line
Communication
Compile
Comportment
Connectivity
Contract
Corporate
Crash
Curious
Daemon
Dirty
Emotional
Flow
Fountain
Galaxies
Gooey
Green
Guide
Hand
Icon
Intake
Intimate
Imperial
Issues
Kernel
Libraries
Machine
Magic
Mantra
Memory

108

Museum
Naming
Noise
Observation
Passive-aggressive
Parental
Pause
Perception
Power
ProductionPower
Programmers
Progress
Promiscuous
Public
Punch
Quine
Quit
Relational
Red
Scripting
Scroll
Scrum
Silence
Spin
Spindle
Software
Softwear
Sundial
Survival
Technology
Test
Thank you
Time
Trailing
Urgency
Useless
Volatile
Warning
WhiteBoard
Write
Yoga

109

110

111

Adding qualifiers
WHAT:: Applying a moral, ethical, or otherwiseevaluative/adjectival/validating lens.
R E M E M B E R
[V]alues are properties of things and states of affairs that we
care about and strive to attain. . . Values expressed in
technical systems are a function of their uses as well as
their features and designs. 40

Adjectives create subcategories. They narrow the focus by namingmore specifically the imagined object at hand and by implicitlyexcluding all objects that do not meet the criteria of the qualifier.The more adjectives that are added, the easier it becomes toanswer the question “what is software?”. Or so it seems. Considerwhat happens if you add the words good, bad, bourgeois, queer,stable, expensive to software. Now make a list of adjectives andtry it for yourself. Level two of this exercise consists of observinga software application and deducing from this the values of theindividuals, companies, and societies that produce, distribute, anduse it.
NOTE:: A qualifier may narrow definitions to undesirable de-grees.

40 Mary Flanagan and Helen Nissenbaum: Values at Play in Digital Games. 2014

112

WARNING::This exercise may be more effective at identi-fying normative and ideological assumptions at play in themaking, distributing, using, and maintaining of software thanat producing a concise definition.

XAMPLE:: “When asked, Jean Heuns had difficulty answeringthe question”what is software“, but he said that he could answerthe question”what is good software". What is good software?

Notes on Multiple Software Axes http://observatory.con
stantvzw.org/etherdump/multiple-software-axes.h
tml

113

Searching “software”through software

WHAT:: A quick way to sense the ambiguity of the term“software” is to go through the manual files on your hard driveand observe the cases in which the term is used.

HOW::Command-line oneliner

114

WHY:: Software is a polysemous term that takes on differentmeanings depending on where, when and by who it issummoned. It comes with different assumptions for the differentagents involved in its production, and for those whom otherwiseuse, encounter, or are subjected to it in any way or form. Fromthe situated point of view of the software present on yourmachine, when and why does software call itself by that name.

So software exists only outside your computer? Only in generalterms? Checking for the word software in all manual pages:
grep -nr software /usr/local/man
!!!!

Software appears only in terms of license:
This program is free software
This software is copyright (c)

We don’t run software. We still run programs.Nevertheless software is everywhere.

See notes line 574-589 Day1 http://observatory.const
antvzw.org/etherdump/files.md.diff.html

P.49
SEE ALSO:: Ask several people from different fields and agegroups the same question: "What is software?"

115

Persist in callingeveryone a SoftwareCurious Person
WHAT:: Naming can be a method for changing a person’srelationship to software. For example, by (sometimes forcibly)calling everyone a Software Curious Person it might be possibleto help people realizing their actual knowledge and practices andencourage them to engage more in understanding what softwareis, in order to reclaim their power over tools.
HOW:: Insisting on curiosity as a relation, rather than forexample fear or admiration might help cut down the barriersbetween different types of expertise and allow multiplestakeholders to feel entitled to ask questions, to engage, toinvestigate and to observe.
WHEN::Persistently
URGENCY:: Software is too important to not be curiousabout. Observations could benefit from recognising differentforms of knowledge. It seems important to engage with softwarethrough multiple from multiple perspectives and positions, notonly by means of technical expertise.

XAMPLE:: This method was used to address each of thevisitors at the Technogalactic Walk-in Clinic.

116

117

118

Giving some meaning / emotion to the time of
“nothing happening”, the moment of pause when
logging in to a service, a return to the
experience of the body. 41

The programmer, who needs clarity, who must
talk all day to a machine that demands
declarations, hunkers down into a low-grade
annoyance. It is here that the stereotype of
the programmer, sitting in a dim room,
growling from behind Coke cans, has its
origins. The dis-order of the desk, the floor;
the yellow Post-it notes everywhere; the
whiteboards covered with scrawl: all this is
the outward manifestation of the messiness of
human thought. The messiness cannot go into
the program; it piles up around the
programmer. Soon the programmer has no choice
but to retreat into some private interior
space, closer to the machine, where things can
be accomplished. 42

The list of things machines are good at
continually expands, and assertions about the
things humans are said to be good at generally
consider only whether a human can physically
or cognitively accomplish a task, rather than

41 Techno-Galactic Software Observatory: Notes from the Observatory on When and
Where is Software. 201742 Ellen Ullman: Close to the Machine: Technophilia and Its Discontents. English.Reprint edition. New York: Picador, Feb. 2012. I S B N: 978-1-250-00248-8, pg.23

119

whether the task is morally and ethically
defensible or desirable. [. . .] Assuming a
timeless, natural division of labor in which
we divvy up the work for humans and the work
for machines each according to their abilities,
deflects attention from the specific conditions
under which humans labor, and the changing
systems of compensation and reward in which
they contribute value to the projects of
others. 43

Our therapeutic approach is inspired by the
unix file system paradigm in which every
component of a computer can be represented by
a file, be it your hard drive, memory or sound
card. Going together through the affordances
and limitations of such a paradigm, we hope to
provide a more intimate access to your
software. Wheter it is about specific
problematic situations with your computer, or
to address a general curiosity about
filesystems, we will take you by the hand
through an extensive intake. 44

43 Hamid Ekbia and Bonnie Nardi: Heteromation and its (dis)contents: The invisible
division of labor between humans and machines. en. In: First Monday 19.6 (May2014). I S S N: 13960466. Visited on Jan. 31, 201844 Techno-Galactic Software Observatory: Introduction to file therapy. 2017

120

Setup a RelationalSoftwareObservatoryConsultancy (RSOC)
WHAT:: Ethnomethodological interviews.

HOW::Read the signs. Considering the ever changing natureof software development and use, and its vast impact onglobalized societies, it is necessary to recognize that theproblems arising from software are often eitherpassively-perceived or actively-observed without an articulationof the relations. Reading the signs of the relational aspect ofsoftware observance will give you another view on software thatwill shape your ability to survive any kind of software disaster.
• Collectivise research around hacking to save time.• Self-articulate software needs as your own Operating (system)perspective.• Change the lens by looking at software with a time-basedperspective.
WHO::A practitioner who can facilitate the “what is our relationto software” discussion and administer the RSOC interview as aservice.

121

XAMPLE:: What follows is an example of a possiblediagnostic questionnaire.

What to expect

Through administration of this questionnaire, you will obtain acartographic view of software users profiles. It will help you toshape your own relation to software. You will be able to constructyour own taxonomy and classification of software users which isnecessary in order to find a means of rescue in case of a softwarecatastrophe.

User Habits

• What kind of user would you say that you are?• What is your most frequently used type of software?• How often do you install/experiment/learn new software?

History

• What is your first recollection of software use?• How often do/when did you last purchase software or pay fora software service?

Ethics

• What is the software feature you care about the most?• Do you use any Free Software?If yes than
– do you remember your first attempt at using this softwareservice? Do you still use it? If not why?• Do you pay for media distribution/streaming services?

122

• Do you remember your first attempt at using Free Softwareand how did that make you feel?• Have you used any of these software services: Facebook, dat-ing apps (Grindr, Tinder, etc.), Twitter, Instagram or equivalent.• Can you talk about your favorite apps or webtools that you useregularly?• What is the most popular software your friends use?

Skill

• Would you say that you are a specilised user?• Have you ever used the command line?• Do you know about scripting?• Have you ever edited an HTML page? A CSS file? A PHP file?A configuration file?• Can you talk about your most technical encounter with yourcomputer / telephone?

Economy

• How do you pay for your software use?• Please elaborate (for example, do you buy the software? /contribute in kind / deliver services or support)• What is the last software that you paid for using?• What online services are you currently paying for?• Is someone paying for your use of service?

Personal

• What stories do you have concerning contracts and adminis-tration in relation to your software, Internet or computer?• How does software help you shape your relations with otherpeople?

123

• From which countries does your softwares come from / reside?How do you feel about that?• Have you ever read a terms of use for a software service, whatabout one that is not targeting the American market?

Possible/anticipated user profiles

...meAsHardwareOwnerSoftwareUSER: I did not own a com-puter personally until very very late as I did not enjoy gaming asa kid and had no interest in spending much time behind a PC be-yond work (and work computer). My first experience was hence Ithink in 2005 and it was a SGI workstation that was the computerof the year 2000 (cost 10.000USD) and I got it for around 300USD.Proprietary drivers for unified graphics+RAM were never released,so it remained a software dead-end in gorgeous blue curved chas-sis (P.125).

...meAsSoftwareCONSUMER: I payed/purchased software onlytwice in my life (totalling less then 25eur), as I could access mostcommercial software as widely pirated in Balkans and later hadmore passion for FLOSS anyway, this made me relate to softwareas material to exchange and work with, rather than commoditygoods I could or could not afford.

...meAsSoftwareINVESTOR: I did it as both of those apps wereniche products in early beta (one was Jeeper Elvis, real-time-non-linear-video-editor for BeOS) that failed to reach market, but I thinkI would likely do it again and only in that mode (supporting thebleeding edge and off-stream work), but maybe with more than25eur.

124

http://www.sgidepot.co.uk/sgidepot/pics/vwdocs.jpg

125

...meAsSoftwareUserOfOS: I would spend most of 80s ignoringcomputers, 90s figuring out software from high-end to low-end,starting with OSF/DecAlpha and SunOS, than IRIX and MacOS,finally Win 95/98 SE, that permanently pushed me into niches (ofmontly Linux distro install fests, or even QNX/Solaris experimentsand finally BeOS use).

...meAsSoftwareWEBSURFER: I got used to websurfing in morethan 15 windows on Unix systems and never got used to less thanthat ever since, furthermore with addition of more browser optionsthis number only multiplied (always wondered if my first systemwas Windows 3.11 - would I be a more focused person and howwould that form my relations to browser windows>tabs).

...meAsSoftwareUserOfProprietarySoftware: I signed one NDAcontract in person on the paper and with ink on a rainy day whilestopping of at train station in northern Germany for the softwarethat was later to be pulled out of market due to problematic licens-ing agreement (intuitively I knew it was wrong) - it had too muchunprofessional pixeleted edges in its graphics.

...meAsSoftwareUserOfDatingWebsites: I got one feature re-quest implemented by a prominent dating website (to search pro-files by language they speak), however I was never publicly ac-knowledged (though I tried to make use of it few times), that madeour relations feel a bit exploitative and underappreciated.

...meAsSoftwareUserTryingToGoPRO: My only two attempts toget into a software company failed as they insisted on full timecommitments. Later I found out one was intimidated in the inter-view and the other gave it to a person that negotiated to work parttime with a friend! My relation to professionalism is likely equallycomplex and perverted as my one to the software.

126

This method was developed by The RSOC Group.

127

128

Case study : W. W.

...ww.AsExperiencedAdventurousUSER: Experiments with soft-
ware every two days as she uses FLOSS and GNU/Linux, cares
the most for malleability of the software - as a result she has big
expectations of flexibility even in software category which is quite
conventional and stability focused like file-hosting.

...ww.AsAnInvestorInSoftware: Paid for a compiled version of
FLOSS audio software 5 years ago as she is supportive of econ-
omy and work around production, maintenance and support, but
she also used closed hardware/software where she had to agree
on licences she finds unfair, but then she was hacking it in order
to use it as an expert - when she had time.

...ww.AsCommunicationSoftwareUSER: She is not using com-
mercial social networks, so she is very conscious of information
transfers and time relations, but has no strong media/format/de-
sign focus.

Q: What is your first recollection of software use?
A: MS-DOS in 1990 at school – I was 15 or 16. Oh no 12. Basicin 1986.
Q: What are the emotions related to this use?
A: Fun. I’m good at this. Empowering.
Q: How often do/when did you last purchase software or pay fora software service?
A: I paid for ardour five years ago. I paid the developper directly.For the compiled version. I paid for the service. I pay for my web-site and email service at Domaine Public.
Q: What kind of user would you say you are?
A: An experienced user drawing outside the lines. I don’t behave.

129

Q: Is there a link between this and your issue?
A: Even if it’s been F/LOSS there is a lot of decision power in mypackage.
Q: What is your most frequently used type of software?
A: Web browser. Email. Firefox & Thunderbird.
Q: How often do you install/experiment/learn new software?
A: Every two days. I reinstall all the time. My old lts system died.Stop being supported last april. It was Linux Mint something.
Q: Do you know about scripting?
A: I do automating scripts for any operation I have to doi severaltimes like format conversion.
Q: Can you talk about your most technical encounter with yourcomputer/telephone?
A: I’ve tried to root it. But i didn’t succeed.
Q: How much time do you wish to spend on such activities likehacking, rooting your device?
A: Hours. You should take your time.
Q: Did you ever sign license agreement you were not agree with?How does that affect you?
A: This is the first thing your when you have a phone. It’s obey ordie.
Q: What is the software feature you care for the most?
A: Malleability. Different ways to approach a problem, a challenge,an issue.
Q: Do you use any free software?
A: Yes. There maybe are some proprietary drivers.

130

Q: Do you remember your first attempt at using free software andhow did that make you feel?
A: Yes I installed my dual boot in. . . 10 years ago. Scared andpowerful.
Q: Facebook, dating apps (Grindr or the sort), Twitter, Instagramor equivalent?
A: Google, Gmail. That’s it.
Q: Can you talk about your favorite apps or webtools that you useregularly?
A: Music player. Vanilla music and f-droid. browser. I pay attentionto clearing my history, no cookies. I also have iceweasel. Httpsby default. Even though I have nothing to hide.
Q: What stories around contracts and administration in relation toyour software internet or computer?
A: Nothing comes to my mind. I’m not allowed to do, to installon a phone. When it’s an old phone, there is nothing left that isworking you have to do it.
Q: How does software help you shape your relations with otherpeople?
A: It’s a hard question. If it’s communication software of course it’sits nature to be related to other people. There is an expectencyof immediate reply, of information transfer. . . It’s troubling yourrelation with people in certain situations.
Q: From which countries does your softwares live/is coming from?How do you feel about that?
A: I think I chose the Netherlands as a mirror. You are hoping toreflect well in this mirror.
Q: Have you ever read a terms of software service; one that isnot targeting the American market?
A: I have read them. No.

131

132

133

134

Agile Sun Salutation

R E M E M B E R
Agile software development describes a set of values and
principles for software development under which
requirements and solutions evolve through the collaborative
effort of self-organizing cross-functional teams. It advocates
adaptive planning, evolutionary development, early delivery,
and continuous improvement, and it encourages rapid and
flexible response to change. These principles support the
definition and continuing evolution of many software
development methods. 45

WHAT:: You will be observing yourself

45 Wikipedia contributors: Agile software development — Wikipedia, The Free
Encyclopedia. 2018

135

Scrum is a framework for managing software development.
It is designed for teams of three to nine developers who
break their work into actions that can be completed within
fixed duration cycles (called “sprints”), track progress and
re-plan in daily 15-minute stand-up meetings, and
collaborate to deliver workable software every sprint.
Approaches to coordinating the work of multiple scrum
teams in larger organizations include Large-Scale Scrum,
Scaled Agile Framework (SAFe) and Scrum of Scrums,
among others. 46

WHEN::Anywhere where it’s possible to lie on the floor

Self-organization and motivation are important, as are
interactions like co-location and pair programming. It is
better to have a good team of developers who communicate
and collaborate well, rather than a team of experts each
operating in isolation. Communication is a fundamental
concept. 47

46 Wikipedia contributors: Scrum (software development) — Wikipedia, The Free
Encyclopedia. 201847 Wikipedia contributors: The Manifesto for Agile Software Development. 2018

136

	

5

Because	 of	 the	 broad	 aims	 of	 this	 chapter,	 we	 have	 relied	 on	 a	 combination	 of	methodologies.	 This	

includes	over	20	in-person	and	telephone	interviews	with	relevant	industry	experts,	including	software	

developers,	 devops,	 product	 managers	 and	 developers,	 data	 engineers,	 a/b	 testers,	 AI	 experts,	 and	

privacy	officers.	During	these	conversations,	we	inquired	how	the	production	of	software	and	services	is	

organized,	 as	 well	 as	 how	 relevant	 transformations	 have	 come	 to	 affect	 the	 conditions	 for	 privacy	

governance.	 In	 addition	 to	 the	 interviews,	we	 have	 relied	 on	 industry	white	 papers,	 legal,	 policy	 and	

technical	documents,	as	well	as	 relevant	 scientific	 literature,	 in	particular	 from	the	 fields	of	 computer	

science	and	engineering,	industrial	management,	software	studies,	regulation	and	law.	We	build	on	Yoo	

and	Blanchette’s	volume	on	 the	 regulation	of	 the	cloud	and	 the	 infrastructural	moment	of	computing	

(Yoo	and	Blanchette	2015)	as	well	as	Kaldrack	and	Leeker’s	edited	volume	on	the	dissolution	of	software	

into	services	(Kaldrack	and	Leeker	2015).	

	

In	the	coming	sections,	we	first	describe	the	three	shifts	that	constitute	what	we	call	the	agile	turn.	For	

each	of	the	shifts,	we	touch	on	their	historical	roots	and	sketch	some	of	 its	current	motions.	Next,	we	

introduce	the	three	perspectives	through	which	we	explore	the	implications	of	the	agile	turn	to	privacy	

governance,	namely	modularity,	temporality	and	capture.	These	perspectives	also	allow	us	to	question	

some	of	the	underlying	assumptions	of	privacy	research	and	policy	when	it	comes	to	the	production	of	

software	and	digital	functionality	more	generally.		

2.	The	Agile	Turn	

Over	 the	 last	 decade	 and	 a	 half,	 the	 production	 of	 (non-critical)	 software	 has	 been	 fundamentally	

transformed	 as	 the	 result	 of	 three	 parallel	 developments.	 First,	 increasingly	 software	 producers	 have	

moved	from	the	use	of	heavyweight	and	planned	development	models	for	information	systems	such	as	

the	 so-called	waterfall	model,	 to	 lightweight	 and	 lean	methods
5
.	 These	 latter	models	 are	 categorized	

under	the	umbrella	term	‘agile’	software	development	and	involve	an	emphasis	on	user-centricity,	short	

development	cycles,	continuous	testing	and	greater	simplicity	of	design	(Douglass	2015).	

	

Second,	pervasive	connectivity	and	advances	in	flexible	client-server	models	have	made	possible	a	shift	

from	 “shrink	 wrapped	 software”	 products	 to	 software	 as	 services	 as	 the	 model	 for	 architecting	 and	

offering	 digital	 functionality.	 In	 this	 so-called	 service-oriented	 architecture	 (SOA)	model,	 software	 no	

longer	 runs	only	on	 the	client	 side,	but	 is	 redesigned	 to	 run	on	a	 thin	 client	 that	 connects	 to	a	server	

which	carries	out	most	of	the	necessary	computation.	In	addition,	the	core	functional	components	of	a	

5
	A	2015	survey	conducted	by	HP	as	part	of	their	report	titled	“State	of	Performance	Engineering”	with	601	IT	

developers	in	400	US	companies	indicated	that	two	thirds	of	these	companies	are	either	using	“purely	agile	

methods”	or	“leaning	towards	agile”.	“Is	agile	the	new	norm?”	http://techbeacon.com/survey-agile-new-norm	

Seda Gürses and Joris van Hoboken: Privacy after the Agile Turn. 2017

137

	

10

realized	that	its	internal	solutions	for	the	production	and	management	of	virtual	machines	could	be	the	

basis	 of	 an	 external	 offering	 as	 well	 (Black	 2009).	 To	 phrase	 it	 differently,	 Amazon’s	 cloud	 offerings	

emerged	 from	 internally	 oriented	 engineering	 innovations	 related	 to	 the	 efficient	 production	 of	 their	

services	in	a	new	production	paradigm.	Amazon’s	cloud	services	are	leading	in	the	industry	(Knorr	2016).	

	

More	 recently,	 a	 similar	 move	 can	 be	 observed	 in	 the	 proliferation	 of	 the	 container	 model	 for	 the	

production	and	management	of	service	components	in	a	cloud	environment	(Metz	2014).	This	container	

model	 involves	a	further	advancement	in	the	use	of	the	cloud	for	production	of	digital	functionality.	 It	

involves	an	abstraction	away	from	the	virtual	machine	and	a	focus	on	making	the	service	component	the	

dominant	 building	 block,	 both	 for	 development	 as	 well	 as	 for	 operations.	 In	 the	words	 of	 the	 Cloud	

Native	 Computing	 Foundation	 (CNCF),	 that	 is	 spearheading	 the	 container	 model:	 “Cloud	 native	

applications	 are	 container-packaged,	 dynamically	 scheduled	 and	 microservices-oriented"	 (Fay	 2015).	

The	 foundation	 includes	 the	 likes	of	Cisco,	Google,	Huawei,	 IBM,	Red	Hat,	 Intel,	Docker	and	 the	Linux	

Foundation.	 Google’s	 contribution	 involves	 the	 donation	 of	 open	 sourced	 container	 manager	

‘Kubernetes’,
11
	an	open	sourced	solution	derived	from	its	internal	solution	called	Borg	(Metz	2015).	

	

The	agile	turn	has	accelerated	software	production	while	transforming	business	operations.	Clearly,	this	

has	 great	 implications	 for	 different	 aspects	 of	 privacy	 governance.	Many	of	 the	elements	of	 the	 agile	

turn	 have	 been	 addressed	 by	 privacy	 researchers	 and	 policymakers	 in	 some	 way,	 but	 an	 integrated	

perspective	on	the	implications	of	the	agile	turn	for	privacy	governance	has	so	far	been	missing.	In	the	

next	sections,	we	develop	three	perspectives	that	allow	us	to	look	at	the	privacy	implications	of	the	agile	

turn	and	to	start	reflecting	upon	the	ability	of	existing	privacy	governance	frameworks	to	address	some	

of	the	related	challenges.	

3.	Modularity	

The	agile	turn	comes	with	an	increase	in	modularity	in	the	software	as	a	service	environment.	The	term	

modularity	is	used	to	describe	the	degree	to	which	a	given	(complex)	system	can	be	broken	apart	into	

subunits	(modules),	which	can	be	coupled	in	various	ways	(Baldwin	2015).	As	a	design	or	architectural	

principle	modularity	 refers	 to	 the	 “building	of	a	 complex	product	or	process	 from	smaller	 subsystems	

that	 can	be	designed	 independently	 yet	 function	 together	 as	 a	whole”	 (Baldwin	 and	Clark	 1997).	 The	

concept	 of	modularity	 and	 its	 application	 have	 been	 the	 subject	 of	 research	 in	 different	 engineering	

disciplines	and	 industrial	management	(Dörbecker	and	Böhmann	2013).	 It	 is	generally	used	to	manage	

complexity	of	systems	and	to	allow	for	 independent	 implementation	and	reuse	of	system	components	

(Clark	et	al.	2005)	and	is	an	important	design	and	policy	principle	for	the	Internet	(Van	Schewick	2010;	

Yoo	 2016).	 Modular	 design	 involves	 the	 mantra	 that	 the	 independence	 of	 system	 components	 is	

11
	Kubernetes	is	derived	from	κυβερνήτης	and	is	Greek	for	"helmsman"	or	"pilot".	

138

URGENCY::Use Agile Software Development Methods todevelop a new path into your professional and personal lifetowards creativity, focus and health.

The agile movement is in some ways a bit like a teenager:
very self-conscious, checking constantly its appearance in a
mirror, accepting few criticisms, only interested in being with
its peers, rejecting en bloc all wisdom from the past, just
because it is from the past, adopting fads and new jargon, at
times cocky and arrogant. But I have no doubts that it will
mature further, become more open to the outside world,
more reflective, and also therefore more effective. 48

Agile Sun Salutation was developed by Anne Laforet and performed
by Allegra. See following pages for the full script.

48 Philippe Kruchten: Agile’s Teenage Crisis? 2011

139

140

Agile Sun Salutation

Hello and welcome to the presentation of the agile yoga method-ology. I am Allegra, and today I’m going to be your personal guideto YOGA, an acronym for “whY Organize? Go Agile!”. I’ll be partof your team today and we’ll do a few exercises together as anintroduction to a new path into your professional and personal lifetowards creativity, focus and health.
A few months ago, I was stressed, overwhelmed with my work,feeling alone, inadequate, but since I started practicing agile yoga,I feel more productive. I have many clients as an agile yoga coach,and I’ve seen new creative business opportunities coming to meas a software developer.
For this first experience with the agile yoga method and beforewe do physical exercises together, I would like to invite you toclose your eyes. Make yourself comfortable, lying on the floor,or sitting with your back on the wall. Close your eyes, relax. Getcomfortable. Feel the weight of your body on the floor or on thewall. Relax.
Leave your troubles at the door. Right now, you are not procras-tinating, you are having a meeting at the <SAY THE NAME OFYOUR LOCATION HERE>, a professional building dedicated tobusiness, you are meeting yourself, you are your own businesspartner, you are one. You are building your future.
You are in a room standing with your team, a group of lean pro-grammers. You are watching a white board together. You arestarting your day, a very productive day as you are preparing torun a sprint together. Now you turn towards each other, makinga scrum with your team, you breathe together, slowly, inhalingand exhaling together, slowly, feeling the air in and out of yourbody. Now you all turn towards the sun to prepare to do your

141

ASSanas, the Agile Sun Salutations or ASS with the team dedi-cated ASS Master. She’s guiding you. You start with Namaskar,the Salute. your palms joined together, in prayer pose. You allreflect on the first principle of the agile manifesto. Your highestpriority is to satisfy the customer through early and continuousdelivery of valuable software.
Next pose, is Ardha Chandrasana or (Half Moon Pose). With adeep inhalation, you raise both arms above your head and tiltslightly backward arching your back. You welcome changing re-quirements, even late in development. Agile processes harnesschange for the customer’s competitive advantage. Then you all doPadangusthasana (Hand to Foot Pose). With a deep exhalation,you bend forward and touch the mat, both palms in line with yourfeet, forehead touching your knees. You deliver working softwarefrequently.
Surya Darshan (Sun Sight Pose). With a deep inhalation, youtake your right leg away from your body, in a big backward step.Both your hands are firmly planted on your mat, your left footbetween your hands. You work daily throughout the project, busi-ness people and developers together. Now, you’re flowing intoPurvottanasana (Inclined Plane) with a deep inhalation by takingyour right leg away from your body, in a big backward step. Bothyour hands are firmly planted on your mat, your left foot betweenyour hands. You build projects around motivated individuals. Yougive them the environment and support they need, and you trustthem to get the job done.
You’re in Adho Mukha Svanasana (Downward Facing Dog Pose).With a deep exhalation, you shove your hips and butt up towardsthe ceiling, forming an upward arch. Your arms are straight andaligned with your head. The most efficient and effective methodof conveying information to and within a development team isface-to-face conversation.

142

Then, Sashtang Dandawat (Forehead, Chest, Knee to Floor Pose).With a deep exhalation, you lower your body down till your fore-head, chest, knees, hands and feet are touching the mat, your butttilted up. Working software is the primary measure of progress.
Next is Bhujangasana (Cobra Pose). With a deep inhalation, youslowly snake forward till your head is up, your back arched con-cave, as much as possible. Agile processes promote sustainabledevelopment. You are all maintaining a constant pace indefinitely,sponsors, developers, and users together.
Now back into Adho Mukha Svanasana (Downward Facing DogPose). Continuous attention to technical excellence and gooddesign enhances agility.
And then again to Surya Darshan (Sun Sight Pose). Simplicity–the art of maximizing the amount of work not done–is essential.Then to Padangusthasana (Hand to Foot Pose). The best archi-tectures, requirements, and designs emerge from self-organizingteams.
You all do Ardha Chandrasana (Half Moon Pose) once again. Atregular intervals, you as the team reflect on how to become moreeffective, then tune and adjust your behavior accordingly. Youend our ASSanas session with a salute to honor your agile yogapractices. You have just had a productive scrum meeting. Now iinvite you to open your eyes, move your body around a bit, fromthe feet up to the head and back again.
Stand up on your feet and let’s do a scrum together if you’re okaybeing touched on the arms by someone else. If not, you can doit on your own. So put your hands on the shoulder of the SCParound you. Now we’re joined together, let’s look at the screentogether as we inhale and exhale, syncing our bodies together tothe rythms of our own internal software, modulating our oxygenlevel intake requirements to the oxygen availability of our servicefacilities.

143

Now, let’s do together a couple of exercises to protect and strengthenour wrists. As programmers, as internauts, as entrepreneurs, ourwrists are a very crucial parts of the body to protect. In order to beable to type, to swipe, to shake hands vigourously, we need themin good health. So bring to hands towards each other in a prayerpose, around a book, a brick. You can do it without an object butI’m using my extreme programming book - embrace change - forthat. So press the palms together firmly, press the pad of yourfingers together. Do that while breathing in and out twice.
Now let’s extend our arms out in the air, palms and fingers facingdown, like we’re typing. Make your shoulders round. Let’s breathwhile visualizing in our heads the first agile mantra: Individualsand interactions over processes and tools.
Now let’s bring back the arms next to the body and raise themagain. And let’s move our hands towards the ceiling this time,strenghtening our back. In our head, the second mantra: Workingsoftware over comprehensive documentation.
Now let’s bring the hands back out again in the standing position.Once again the first movement while visualizing the third mantra:Customer collaboration over contract negotiation.
And then the second movement once more while thinking aboutthe fourth and last mantra: Responding to change over followinga plan and of course we continue breathing.
Now to finish this session, let’s do a sprint together in the corridor!

144

145

Hand reading
WHAT:: Have your fortunes read and derive insights into lifefrom the wisdom of software.

HOW:: Put your hand in the nearest Future BlobservationBooth, and get your command lines read.

WHY:: The hand which holds your mouse everyday hidesmany secrets.

sample reading timeline:

• 15:00 a test user, all tests clear and systems are online auser who said goodbye to us another user a user who thoughtit’d be silly to say thank you to the machine but thank youvery much another kind user who said thank you yet anotherkind user another user, no feeback a nice user who foundthe reading process relieving yet another kind user a scareduser! took the hand out but ended up trusting the system. “socool thanks guys” another user a young user! this is a funnycomputer• 15:35 another nice user• 15:40 another nice user• 15:47 happy user (laughing)

146

• 15:51 user complaining about her fortune, saying it’s not true.Found the reading process creepy but eased up quickly• 15:59 another nice user: http://etherbox.local:9001
/p/SCP.sedyst.md• 16:06 a polite user• 16:08 a friendly playful user (stephanie)• 16:12 a very giggly user (wendy)• 16:14 a playful user - found the reading process eroticDEFRAGMENTING? NO! Thanks Blobservation http://et
herbox.local:9001/p/SCP.loup.md• 16:19 a curious user• 16:27 a friendly user but oh no, we had a glitch and computercrashed. But we still delivered the fortune. We got a thank youanyway• 16:40 a nice user, the printer jammed but it was sorted outquickly• 16:42 another nice user• 16:50 nice user (joak)• 16:52 yet another nice user (jogi)• 16:55 happy user! (peter w)• 16:57 more happy user (pierre h)• 16:58 another happy user• 17:00 super happy user (peggy)• 17:02 more happy user

147

Software time is not the same as human time. Computers
will run for AS LONG AS THEY WILL BE ABLE TO,
provided sufficient power is available. You, as a human,
don’t have the luxury of being always connected to the
power grid and thus have to rely on your INTERNAL
BATTERY. Be aware of your power cycles and set yourself
to POWER-SAVING MODE whenever possible.

148

149

Bug reporting forsharing observations

WHAT:: Sharing the experience of trying to solve ahard-boiled software noir.

WHEN:: It is difficult to take notes while working on criticalinfrastructure, but the sooner notes are compiled, the more vividthe report.

WHO::Bug reports are often presented in a dry format intendedfor insiders only. But they do not have to be dry. On the contrary,they can have a rather convivial format.

URGENCY:: Embracing moments of breakdown asopportunities to demystify the workings of software and thepractice of software debugging.

150

On monday morning, with the Walk-In Clinic about to open, Etherpadhad stopped working but it was unclear why. Where did the ether-pad live? What could be done to bring it back to normal operation?A detailed bug report was filed, starting by looking around the pi’sfilesystem by reading /var/log/syslog in /opt/etherpadand in a subdirectory named var/ there was dirty.db, anddirty it was.
After some getting used to the various commands to
navigate in hexedit the unwanted zeroes were gone in an
instant.

Martino asked about the trailing ‘.’ character and I checked
a different copy of the file. No ‘.’ there, so that had to go too.
My biggest mistake in a long time! The ‘.’ we were seeing in
Martino’s copy of the file was in fact a ‘\n’ (0a)!

We still don’t know why exactly etherpad stopped working
sometime Sunday evening or how the zeroes got into the file
dirty.db

The example was extracted from an e-mail sent by J. Hofmüller to
the Technogalactic Software Observatory mailinglist. The full text is
on the following pages.

151

152

from jogi@mur.at to [Observatory]

When dirty.db get's dirty

Dear all,as promised yesterday, here my little report regarding the brokenetherpad.

When dirty.db get’s dirty

When I got to WTC on Monday morning the etherpad on ether-box.local was disfunct. Later someone said that in fact etherpadhad stopped working the evening before, but it was unclear why.So I started looking around the pi’s filesystem to find out what waswrong. Took me a while to find the relevant lines in /var/log
/syslog but it became clear that there was a problem with thedatabase. Which database? Where does etherpad ‘live’? I foundit in /opt/etherpad and in a subdirectory named var/ there itwas: dirty.db, and dirty it was.
A first look at the file revealed no apparent problem. The last lineslooked like this:
{"key":"sessionstorage:Ddy0gw7okwbkv5BzkR1DuSLCV_IA5_jQ","val":{"cookie
":{"path":"/","_expires":null,"originalMaxAge":null,"httpOnly":true,
"secure":false}}}

{"key":"sessionstorage:AU1cffgcTf_q6BV9aIdAvES2YyXM7Gm1","val":{"cookie
":{"path":"/","_expires":null,"originalMaxAge":null,"httpOnly":true,
"secure":false}}}

{"key":"sessionstorage:_H5SdUlDvQ3XCuPaZEXQ5lx0K6aAEJ9m","val":{"cookie
":{"path":"/","_expires":null,"originalMaxAge":null,"httpOnly":true,
"secure":false}}}

153

What I did not see at the time was that there were some (AFAIRsomething around 150) binary zeroes at the end of the file. I usedtail for the first look and that tool silently ignored the zeroes at theend of the file. It was Martino who suggested using different tools(xxd in that case) and that showed the cause of the problem. Thefile looked something like this:
00013730: 6f6b 6965 223a 7b22 7061 7468 223a 222f okie":{"path":"/
00013740: 222c 225f 6578 7069 7265 7322 3a6e 756c ","_expires":nul
00013750: 6c2c 226f 7269 6769 6e61 6c4d 6178 4167 l,"originalMaxAg
00013760: 6522 3a6e 756c 6c2c 2268 7474 704f 6e6c e":null,"httpOnl
00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y":true,"secure"
00013780: 3a66 616c 7365 7d7d 7d0a 0000 0000 0000 :false}}}.......
00013790: 0000 0000 0000 0000 0000 0000 0000 0000

So Anita, Martino and I stuck our heads together to come up witha solution. Our first attempt to fix the problem went something likethis:
dd if=dirty.db of=dirty.db.clean bs=1 count=793080162

which means: write the first 793080162 blocks of size 1 byte to anew file. After half an hour or so I checked on the size of the newfile and saw that some 10% of the copying had been done. Noway this would get done in time for the walk-in-clinic. Back to thedrawing board.
Using a text editor was no real option btw since even vim hasa hard time with binary zeroes and the file was really big. Butthere was hexedit! Martino installed it and copied dirty.db onto hiscomputer. After some getting used to the various commands tonavigate in hexedit the unwanted zeroes were gone in an instant.The end of the file looked like this now:
00013730: 6f6b 6965 223a 7b22 7061 7468 223a 222f okie":{"path":"/
00013740: 222c 225f 6578 7069 7265 7322 3a6e 756c ","_expires":nul
00013750: 6c2c 226f 7269 6769 6e61 6c4d 6178 4167 l,"originalMaxAg
00013760: 6522 3a6e 756c 6c2c 2268 7474 704f 6e6c e":null,"httpOnl
00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y":true,"secure"
00013780: 3a66 616c 7365 7d7d 7d0a :false}}}.

154

Martino asked about the trailing ‘.’ character and I checked adifferent copy of the file. No ‘.’ there, so that had to go too. Mybiggest mistake in a long time! The ‘.’ we were seeing in Martino’scopy of the file was in fact a ‘\n’ (0a)! We did not realize that,copied the file back to etherbox.local and waited for etherpad toresume it’s work. But no luck there, for obvious reasons.
We ended up making backups of dirty.db in various stages ofdeformation and Martino started a brandnew pad so we coulduse pads for the walk- in-clinic. The processing tool chain hasbeen disabled btw. We did not want to mess up any of the alreadygenerated .pdf, .html and .md files.
We still don’t know why exactly etherpad stopped working some-time Sunday evening or how the zeroes got into the file dirty.db.Anita thought that she caused the error when she adjusted timeon etherbox.local, but the logfile does not reflect that. The lastclean entry in /var/log/syslog regarding nodejs/etherpad isrecorded with a timestamp of something along the line of ‘Jun 1010:17’. Some minutes later, around ‘Jun 10 10:27’ the first errorappears. These timestamps reflect the etherbox’s understandingof time btw, not ‘real time’.
It might be that the file just got too big for etherpad to handle it.The size of the repaired dirty.db file was already 757MB. Thatcould btw explain why etherpad was working somewhat slugishlyafter some days. There is still a chance that the time adjustmenthad an unwanted side effect, but so far there is no obvious reasonfor what had happened.
– J.Hofmüller
http://thesix.mur.at/

155

InterfaceDétournement
WARNING::We are under the black magic of capitalistdigital interface making! Critical radars will detect some con-ceptual gibberish over here!

WHAT:: Satirical détournement of your favorite bullshit websiteinterface, through parody and poetry. Heal your eyes and brainby scratching and diffracting the surface of everyday browsing.

URGENCY:: If you have the feeling that some words areimposed to you and want to reclaim a power of saying/naming.

WHEN::When you reach your limit and can no longer toleratethe jargon of the digital economy and the rhetorics of SiliconValley.

156

R E M E M B E R
Be careful in planning your interface hoax. You might getcaught and accused of fake news design and circulation.

The Interface Détournement-method was developed by Loup Cellard.

Example of an interface template study by Henrik Jan Grievink(P.158)

157

158

1. Choose a particular website where you want to intervene. Youcan pick an interface in relation to:
• contestable content: bullshit slogans and jargon, problematicrhetoric, unnecessary content that is interesting to reframe,etc.• problematic interface issues: unreadabillity, problems of orien-tation/disorientation, interaction design issues, etc.

2. Open the “developer tool” of your browser. With this tool youwill be able to visualize and modify locally the content of yourwebsite (the html rendering) and the way it is styled (the cssfile).3. Then you have to adopt a strategy of intervention guiding yourdétournement. Here is a list of proposed strategies:
• The classical détournement: play with the interface content,replace textual elements, add others with a good dose of hu-mour and irony.• The layout and template observation: study the interface lay-out by removing all the textual content. The layout will appear,after having done this exercise on several interfaces you willbe able to compare the regularities between websites. Thenfeel free to move elements and reconstruct the interface theway you want.

4. After having done your détournement, you can share the out-come of your work as a hoax: present the new interface youhave done just as if it was a mundane and “real” one. Observethe reactions of the tested credulous and refine your détourne-ment with their insights. You can also take a screenshot of yourwork and send it to an audience.

159

Example of an interface detournement of the dropbox website

160

161

Comportments ofsoftware (softwear)
R E M E M B E R
The analysis of common sense, as opposed to the exercise
of it, must then begin by redrawing this erased distinction
between the mere matter-of-fact apprehension of reality–or
whatever it is you want to call what we apprehend merely
and matter-of-factly–and down-to-earth, colloquial wisdom,
judgements, and assessments of it. 49

WHAT:: Observe and catalog the common gestures, commoncomportments, and common sense(s) surrounding software.

NOTE::The common senses and comportments of software areinformed and conditioned by those of hardware and so perhapsthis is more accurately a method for articulating comportments ofcomputing.

49 Clifford Geertz: Common Sense as a Cultural System. In: The Antioch Review 33.1(1975), pp. 5–26. I S S N: 00035769

162

WARNING::Software wears on both individual and collec-tive bodies and selves. Software may harm your physicaland emotional health and that of your society both by designand by accident.

This can be done through observation of yourself or others. Sep-arate the apprehended and matter of fact from the meanings, ac-tions, reactions, judgements, and assessments that the apprehen-sion occasions.
1. Begin by assembling a list of questions such as: When yousee a software application icon what are you most likely todo? When a software application you are using presents youwith a user agreement what are you most likely to do? When asoftware applciation does something that frustrates you whatare you most likely to do? When a software application you areusing crashes what are you most likely to do?2. Write down your responses and the responses of any subjectsyou are observing.3. For each question, think up three other possible responses.Write these down.4. (This step is only for the very curious) Try these other possibleresponses out the next time you encounter each of the givenscenarios.

P.135
SEE ALSO::Agile Sun Salutation

163

164

Contentious meetings. Users trying to
articulate needs that don’t fit neatly into all
the flowcharts and drawings. Compromises.
Promises of “future development” to take
unaddressed needs into account. “Then it moves
to programming,” said the vice president. 50

To get to the demo in five days, the people
coming together had to be sufficiently similar,
sufficiently flexible, and sufficiently few. The
participants all spoke English fluently, had
obtained at least college undergraduate degrees,
and had trained as engineers — with the
exception of the anthropologist, Prem. 51

The “Agile Manifesto” and related commentaries
read as a peculiar combination of working
methods with moral values, yielding a work
ethic tuned towards efficiency, productivity,
and customer satisfaction. While emphasizing
categories such as “individuality,” “freedom,”
and “respect,” many of the recommended
principles and methods are in fact reminiscent
of the theory of “egoless programming”
(. . .). 52

50 Ellen Ullman: Close to the Machine: Technophilia and Its Discontents. English.Reprint edition. New York: Picador, Feb. 2012. I S B N: 978-1-250-00248-8, pg.4851 Lilly Irani: Hackathons and the Making of Entrepreneurial Citizenship. en. In:
Science, Technology, & Human Values 40.5 (Sept. 2015), pp. 799–824. I S S N:0162-2439, 1552-8251. D O I: 10.1177/0162243915578486. Visited on Jan. 31,2018, pg.1352 Christoph Neubert: The Tail on the Hardware Dog. English. In: There is no
Software, there are just Services. Ed. by Irina Kaldrack and Martina Leeker.Lüneburg, 2015, pp. 21 –37. I S B N: 978-3-95796-055-9, pg.33

165

Adrift in the doped lattices of a silicon
crystal, a hole is a positive particle before
it is the absence of a negatively charged
electron, and the movement of electrons toward
the positive terminal is also a flow of holes
streaming the other way. 53

53 Sadie Plant: Zeroes and Ones: Digital Women and the New Technoculture. English.1st edition. New York: Doubleday, Sept. 1997. I S B N: 978-0-385-48260-8, pg.57

166

ContinuousIntegration
WHAT:: A sophisticated form of responsibility management: itis the fascia of software services. Continous Integration picks upafter all other services and identifies what needs to happen sothat they can work in concert. It is a way of observing theevolution of (micro)services through cybernetic(micro)management.
HOW:: Keeping track of changes to all services and allowingeveryone to observe if they still can work together after all themoving parts are fitted together.
WHEN:: In a world of distributed systems where there aremany parts being organized simultaneously, continuousintegration is a form of observation that helps (micro)servicesmaintain a false sense of independence and decentralizationwhile constantly subjecting them to centralized feedback.
WHO::All services and their operators will submit themselves tothe feedback loops of continuous integration. This can be ademocratic process or not.
URGENCY::Continuous Integration is the reconfiguration ofthe divisions of labor in the shadows of automation. How can wesurface and question its doings and undoings?

167

WARNING::When each service does one thing well, theservice makers tend to assume everybody else is doing thethings that they do not want to do.

At the Walk-in Clinic, Continuous Integration was introduced as aservice to respond to the integration hell that was produced whenSoftware Curious Persons attempted to engage in more than oneof the TGSO services on offer. Due to demand, the ContinuousIntegration service was extended to do “service discovery” and“load balancing” once the walk-in clinic was in operation.
Continuous Integration worked by visiting the different services ofthe walk-in clinic to check for updates, test the functionality, andthink through implications of integration with other services. If thepieces didn’t fit, the service delivered error messages and solutionoptions.
When we noticed that Software Curious Persons visiting the walk-in clinic were having troubles finding the different services, andthat some services were overloaded with Software Curious Persons,Continuous Integration was extended. We automated service reg-istration using colored tape and provided a lookup registry forSoftware Curious Persons.
Load balancing meant that Software Curious Persons were for-warded to services that had capacity. If all other services werefull, the load balancer defaulted to sending the Software CuriousPerson to the Agile Sun Salutation 54 service.

54 http://pad.constantvzw.org/p/observatory.guide.agile.yoga

168

169

WARNING::At TGSO, the bundling of different functional-ities into the Continuous Integration service broke the “doone thing well” principle, but saved the day. (We register thisas technical debt for the next iteration of the Walk-In Clinic.)

While Continous Integration held the day together, we are sorry to
report that the work is only documented in images and in the chore-
ography of the day but not in any of our writings.

R E M E M B E R
Continous Integration may be the string that holds your cur-rent software galaxy together. When operated successfully,it is easily overlooked like the air we breathe.

More technically, I am interested in how things bounce
around in computer systems. I am not sure if these two
things are related, but I hope continuous integration will help
me. 55

55 Software Curious Person expressing her hopes for Continuous Integration

170

make make do

WHAT:: Makefile as a method for a promiscuous publication.

It possessed many heads, the exact number of which varies
according to the source. 56

56 Wikipedia contributors: Lernaean Hydra — Wikipedia, The Free Encyclopedia.2018

171

NOTE:: May the traditional software workflow of a Makefile 57
serve as a platform for a hyper flexible constellation of multi-stylemini-programs spread out over files and folders, media and meta-data?
A promiscuous publication is NOT like parallel, hybrid, or cross-media publishing. It is a multi-headed and polycentric form ofmaking public. It enjoys its various forms, and embraces their id-iosyncracies. As a multi-headed publication it is NOT obsessedwith providing uniform outcomes across diverse media. Havingmany centers, it can produce new focal points and obfuscate itsorigins. It explores playfully a spectral diversity with sibling out-comes and bastard children that operate out of sync or tune.
We are curious about creating pipelines that stir and create cur-rents and behaviours spiraling outside of the continuity of pre-dictable flows, where their modality switches as their inputs so-lidify, evaporate and gelatinize into diverse forms in reactions toconditions, while influencing and changing the others.
How can the making-public itself be an engaging experience, inter-active but with erratic options? How could the process of iteratingbetween known sources and diverse and unfamilair pipelines bemade tangible?
find all .md files in the directory

md=$(shell ls etherdump/*.md)

map *.mp => *.html for mdsrc

md2html=$(md:%.md=%.html)

md2pdf=$(md:%.md=%.pdf)

inputs

.mdsrcs: A listing of (local) markdown files

57 http://www.gnu.org/software/make/manual/make.html

172

mdsrcs=$(shell ls etherdump/*.mdsrcs)

2col=$(mdsrcs:%.mdsrcs=%.2col.pdf)

pdocpdf=$(mdsrcs:%.mdsrcs=%.pdoc.pdf)

pdochtml=$(mdsrcs:%.mdsrcs=%.html)

.pdfsrc: A listing of local PDF URLS,

optionally with #page= fragment

pdfsrcs=$(shell ls etherdump/*.pdfsrcs)

scrp=$(pdfsrcs:%.pdfsrcs=%.scrp.pdf)

all: $(md2html) $(md2pdf) $(pdochtml) $(pdocpdf) $(2col) $(scrp)

dump:

cd etherdump && etherdump pull --all \

--pub /home/pi/etherdump \

--css lib/styles.css \

--script lib/versions.js --no-raw-ext

cd etherdump && etherdump index *.meta.json \

--templatepath /home/pi/etherdump/lib \

--template index.template.html > _index.html

.PHONY: fixnames

fixnames:

rename "s/ /_/g" *

rename "s/[\(\)\?\']//g" *

rename "s/^(\d)([^\d])/0\1\2/g" *

today:

touch `date +"%Y-%m-%d.md"`

now_folder:

mkdir `date +"%Y-%m-%d-%H%M%S"`

.html <== .md using pandoc

%.html: %.md

pandoc --from markdown \

--to html \

--standalone \

$< \

-o $@

.pdf <== .md using pandoc/latex

173

%.pdf: %.md

pandoc --from markdown \

--table-of-contents \

--standalone \

$< \

-o $@

##

Recipes for lists of MARKDOWN SOURCES

pandoc/latex pdf assembled from markdown sources

%.pdoc.pdf: %.mdsrcs

cat $< | python scripts/urls2paths.py | \

xargs cat | pandoc --from markdown -o $@

html from markdown sources

%.pdoc.html: %.mdsrcs

cat $< | python scripts/urls2paths.py | xargs cat | \

pandoc --from markdown --to html --standalone -o $@

2 column bare bones PDF using Report Lab from markdown sources

%.2col.pdf: %.mdsrcs

cat $< | \

python scripts/urls2paths.py | \

xargs cat | \

pandoc --from markdown --to html --standalone | \

python scripts/rl2cols.py --output $@

###

Recipes for lists of PDF SOURCES

(with possibly #page=start,end fragments)

%.scrp.pdf: %.pdfsrcs

python scripts/pdfsrcs.py $< $@ | bash

special rule for debugging variables

print-%:

@echo '$*=$($*)'

174

Flowcharts (Flow ofthe chart –> chart ofthe flow: ondemand!)
A flowchart is a type of diagram that represents an algorithm, work-flow, or process by showing the steps as boxes of various kindsand depicting their order by connecting the boxes with arrows.This diagrammatic representation illustrates a solution model to agiven problem. Flowcharts are used in analyzing, designing, doc-umenting, or managing a process or program in various fields. 58

WHY:: Through flowcharts one will be able to analyze andreflect on one’s own software situation.

URGENCY::Using flowchart observation methods towardsanalysis will result in on-demand revelation of flows, relations,and connections previously obscured.

58 https://en.wikipedia.org/wiki/Flowchart

175

NOTE:: The term software situation is suggested as a goodreplacement for software problem.
Sample Flowchart Questionnaire

1. Validate your situation?
2. Is it human or machine situation?
human machine I don't know

| | |
3. Choose a flowchart element that best describes your situation?

Operation Represented as trapez

Process Represented as rectangle

Decision Represented as rhombus
https://unicode-table.com/en/

According to your answer go to question 4.

4.1 Identify operation(s) that could
help you out through the situation?

4.2 Identify process(es) that could
help you out through the situation?

4.3 Identify decision(s) that could
help you out through the situation?

5. Was that actually helpful?
Yes No
| |

Done o. How does that make you feel?
(end of this questionnaire) (jump to the beginning)

176

The SOFTWARE SKETCHING OBSERVATION YUPPIES (SSoGY).

http://observatory.constantvzw.org/etherdump/c
linic.newflow.diff.html

Service Log

1. Microsoft word copy/paste situation2. Machine or human situation: it’s uncertain, but looks like ma-chine situation as client tried to uninstall and reinstall, 6 monthslater the situation repeated3. & 4). Process: back up files, obtain a copy of OS of choice andthen reinstall Word. o) How she feels? Feeling angry
More info see Rafaella flowchart pic

177

Appendix A:

• IBM Ruler:
– IBM Flowcharting Template found at NAM-IP (P.180)
– http://observatory.constantvzw.org/images
/wednesday/P1040728.JPG

– left to right
– process - rectange
– input / output - skew square
– document - rectangle, but buttom line is a wave
– manual operation -
– communication link -
– preperation -
– merge - down-pointing triangle
– decision – rhombus
– connector - small circle
– magnetic tape - circle
– display -
– auxilary operation - square
– arrow head - four triangle
– manual input -
– Punched Card - rectangle with left cut edge
– Punched tape - like a flag

• Burroughs Ruler:
– Burroughs Flowcharting Template found at NAM-IP (P.181)
– http://observatory.constantvzw.org/images
/wednesday/P1040730.JPG

– Left to right, top to bottom:
– input/output = parallelogram
– Auxiliary operation = square / gyrational square
– Preparation - hexagon
– Drum or disk - oval
– Process - rectangle
– Off-line storage - triangle

178

– On-line storage - like a quarter moon
– Display - one side oval and one side a little oval
– Manual input - rectangle, but top side askew / irregularrectangle
– Document - rectangle, but buttom line is a wave
– Manual Operation - tilted rectangle
– Magnetic Tape - circle but with a square on the buttom right
– Connector - circle
– Communication Link - a z shaped thingy
– Decision - rhombus
– . . . unknown x 2
– Punched Card
– Terminal
– Punched Tape
– Flow Direction
– Card Deck

179

180

181

Appendix B
Friday:
15:30 - 16:15We started our undertaking by analysing the rulers by IBM andBurroughs. It seems that every symbol on the two rulers has aspecific shape and has a specific meaning. There are similari-ties between the shapes on the two rulers. On the Burroughswe found some symbols without descriptions. We tried to figureout their meaning. We counted up the symbols on the IBM andBurroughs rulers. The specific literature explained to us that engi-neers have a kind of standard for these symbols. These symbolsare vocabulary.
16:15 - 16:40We started with analyzing an educational flow chart as our caseexample 59: We were able to figure out what the arrows on theruler meant. They are used in combination with the decision sym-bol. In shape studies, triangles can be used to direct movementbased on the direction they point. In the flowchart, the options arerepresented by rectangles and squares. In shape studies rectan-gles and squares are stable. They’re familiar and trusted shapesand suggest honesty.
16:45 - 17:00We analyzed a flow chart of a multiplication algorithm. Its contentillustrated an instruction to shift the number left or right . Thedecision box instructed you to repeat it 32 times for the wholenumber! The rectangles were again representing options, whilethe flexible factors were illustrated by the rhombus, the symbolfor Decision. The final symbol with the title “Done” was illustratedby something inbetween a circle and a rectangle.

59 https://en.wikipedia.org/wiki/Flowchart#/media/File:LampFl
owchart.svg

182

17:00 - 17:15We realized in our undertaking that we needed to jump into aninternal perspective and get more familiar with the task of flowchart drawing. For this flow chart we decided to chart the elevatorto the first floor from the perspective of the elevator. To achievethis task we agreed to do field research and go to the first floorby elevator for real. Some of us used this opportunity to smoke acigarette and to elaborate on the experience of the elevator. Thefinal goal is the create a flow chart based on our observations, butwe are going to do this tomorrow. 60

17:15 - 17:40To round off the day we ended with some general reflections. Itseems that the different interpretations of symbols have beenintegrated into flowcharts from the early ones of the 1920s untilnow. 61 To put this knowledge into practice we started to sketchout the flowchart on the wall using Post-its.
Current research goals:

• Flowchart or intervention: what is it like to be a elevator• Zenit browser extension• Iconographic analyses of flow chart symbols• Call-flow && zenit modeling template for the drop-in clinic in-terview

60 Further elevator ruminations were made through reference to Marc Isaacs. Lift. UK,2001. https://www.youtube.com/watch?v=FJNAvyLCTik61 Justin Lau and Xing: Understanding Flowcharts. 2009

183

Saturday:
11:00 - 11:40We updated our research followers and fellow researchers aboutour undertakings.
14:45-18:00Zenit(h) modeling/analysisA method derived from a removal of textual informating fromflowcharts – related to previous work with Zenit: InternationalReview of Arts and Culture 62 created by Ljubomir Micic, founderof Zenitism (Zenitizam) an early 20th Century movement, andzenith – an imaginary point directly “above” a particular location,on the imaginary celestial sphere 63
Connection inspiration: Procedure Flow Chart 64
Some historical experimentation examples:
http://www.e-w-n-s.net/minis-html/futuremil
lionaire/transition/v.gif http://www.e-w-n-s.
net/minis-html/futuremillionaire/transition/a
rrows.gif http://www.e-w-n-s.net/minis-html/
_navigation.htm

Material: Flow chart from Wikimedia Commons, the free mediarepository 65
AfternoonJoseph working on all the ideas at the same timeContinue with flow chart elevatorLara working on Zenit(h) modeling/analysis leading to call-flowtemplate, and zenit browser pluginMichaela helping out the flow chart of the elevator as a case study

62 https://monoskop.org/Zenit63 https://en.wikipedia.org/wiki/Zenith64 https://helios.gsfc.nasa.gov/flowchart.html65 https://commons.wikimedia.org/wiki/Flow_chart

184

Sources:

Software design 66, Flowchart 67, Software design description 68,HTML Unicode UTF-8 69, Penguin Dictionary of Symbols 70, Flowcharthumour 71, Power Point as Knowledge Communication 72

Blank diagrams:

See Nothing Volume Three 73, Blank Diagrams #4: NSA Slidesof PRISM Program 74, Blank Diagrams #1 – Claude Shannon,schematic diagram of a general communication system 75

The Grammar of Shapes: http://vanseodesign.com/web
-design/visual-grammar-shapes

66 https://en.wikipedia.org/wiki/Software_design67 https://en.wikipedia.org/wiki/Flowchart68 https://en.wikipedia.org/wiki/Software_design_description69 https://www.w3schools.com/charsets/ref_utf_geometric.asp70 http://www.iausdj.ac.ir/ostad/DocLib71/J._C._Cirlot_Diction
ary_of_Symbols__1990.pdf71 http://observatory.constantvzw.org/video/A_Computer_Glossar
y.webm#t=02:2672 http://computationalculture.net/article/one-damn-slide-afte
r-another-powerpoint-at-every-occasion-for-speech73 http://silviolorusso.com/see-nothing-volume-three74 http://silviolorusso.com/blank-diagrams-4-nsa-slides-of-pri
sm-program75 http://silviolorusso.com/blank-diagrams-1-claude-shannon-sc
hematic-diagram-of-a-general-communication-system

185

How to create browser add on /or browser extension:
1. Make a new dir at your local machine. Lets called it adds-on &and a folder called icons2. Make an icon for your browser extension3. Open text editor and copy paste this jason code4. You will need to modify the last two lines to point to the ether-box.local & css to point to the extension.css5. Make an css script place your css there
On the browser:
1. Go to extension
2. Load debugger from about:debugging3. Load your extension
manifest.json:
{
"manifest_version": 2,
"name": "extension",
"version": "1.0",
"description": "this is the browser extensions",
"icons": {
"48": "icons/icon-name-here.png"

},
"content_scripts": [
{
"matches": ["*://etherbox.local/*"],
"css": ["extension.css"]

}
]

}

Version 3384 Saved June 10, 2017. Authors: m, lara, carlin + 5
unnamed authors

186

187

188

looking away from the ‘center’, towards
peripheries; observe the ‘negative’ space of
software. whats around it 76

Infrastructure-as-a-service (IaaS)
cloud-computing services provide virtualized
system resources to end users, supporting each
tenant in a separate virtual machine (VM).
Fundamental to the economy of clouds is high
resource utilization achieved by sharing:
providers co-host multiple VMs on a single
hardware platform, relying on the underlying
virtual-machine monitor (VMM) to isolate VMs
and schedule system resources. While
virtualization creates the illusion of strict
isolation and exclusive resource access, in
reality the virtual resources map to shared
physical resources, creating the potential of
interference between co-hosted VMs. A
malicious VM may learn information on data
processed by a victim VM and even conduct
side-channel attacks on cryptographic
implementations. 77

76 Techno-Galactic Software Observatory: Notes from the Observatory on glossaries
and vocabularies. 201777 F. Liu et al.: “Last-Level Cache Side-Channel Attacks are Practical”. In: 2015 IEEE
Symposium on Security and Privacy. May 2015, pp. 605–622. D O I:
10.1109/SP.2015.43, pg.605

189

Unlike proprietary software, Service as a
Software Substitute (SaaSS) does not require
covert code to obtain the user’s data. Instead,
users must send their data to the server in
order to use it. This has the same effect as
spyware: the server operator gets the
data—with no special effort, by the nature of
SaaSS [. . .] With SaaSS, the server operator
can change the software in use on the server.
He ought to be able to do this, since it’s his
computer; but the result is the same as using
a proprietary application program with a
universal back door: someone has the power to
silently impose changes in how the user’s
computing gets done. 78

78 Richard Stallman: What Does That Server Really Serve? en. June 2012. Visited onJan. 31, 2018

190

Something in theMiddle Maybe(SitMM)
R E M E M B E R
In the sexist and militarized language of computer securitya “man in the middle” attack refers to a kind of surveillancewhere an attacker relays and possibly alters the communi-cations of two peers that believe they are communicatingdirectly to each other. These peers may or may not be hu-man.

WHAT:: SitMM allows the Software Curious Person toobserve the network connections that your software makes tothe outside world. Software running in an isolated device mightbe powerful, but when the device is networked it becomes a peerin a wilderness of millions of agencies, some benign, some lessso. It is in the network that machines touch, fluctuate, andpenetrate each other in a promiscuous non-stop bath of datapackets, some real, some spoofed.

191

HOW::SitMM takes a closer look at the network traffic comingfrom/going to a software curious person’s device. The SoftwareCurious Person using SitMM may start the sniffer functionalitywith a single click of a button, perform the interaction with thedevice that they wish to observe and SitMM will issue a report atthe end of that interaction.
The Software Curious Person gets to observe their own traffic.Ideally, observing ones own network traffic should be available toanyone, but using such software may be deemed illegal in somejurisdictions.
For example, in the US, Wiretap Law limits packet-sniffing to par-ties that own the network that is being sniffed. Alternatively theparty that sniffs the network must have consent from communicat-ing parties. Section 18 U.S. Code § 2511 (2) (a) (i) says:

It shall not be unlawful . . . to intercept . . . while engaged in
any activity which is a necessary incident to the rendition of
his service or to the protection of the rights or property of the
provider of that service

See here for a paper 79 on the topic.
It is no surprise that Google went on a big legal spree to de-fend their right to capture unencrypted wireless traffic with GoogleStreetView cars. The courts were concerned about wiretappingand infringements on the privacy of users, and not with the lever-aging of private and public WiFi infrastructure for the gain of afor-profit company. The case raises hard questions about state,corporate, and individual claims on the use of information, and the

79 http://spot.colorado.edu/ sicker/publications/issues.pdf

192

material reality of WiFi signals. So, while WiFi sniffing is commonand the tools like SitMM are widely available, it is not always pos-sible for Software Curious Persons to use them legally or to neatlyfilter out the network “traffic” of one specific individual from thatof “others”, as networks often act as carriers to the interactions ofmany people.
WHEN::SitMM can be used any time a Software CuriousPerson might suspect that their software is connecting toexternal parties, perhaps by “calling home”, the name for when apiece of software contacts its manufacturer to gather usagemetrics or device details that they might be collectingillegitimately. For example untill 2014, when a user first signed upto WhatsApp the entire list of contacts in the user’s phone wassent to WhatsApp servers, which allowed WhatsApp thecompany to build the largest (but invisible) social network in theworld. At the time, it’s network was bigger even than Facebook’s.
WHY:: SitMM is intended to be a tool that gives artists,designers, and educators an easy to use custom WiFi router towork with networks and explore the aspects of our dailycommunications that are exposed when we use WiFi. The goal isto use the output to encourage open discussions about how weuse our devices online.
URGENCY:: “Something in the Middle Maybe” wants to be a

sousveillance software with various goals. Perhaps the mostimportant goal is to demilitarize and emasculate the language ofcomputer security. By introducing gender-neutral terminologyand ambiguity, SitMM brings poetry where before there only wasroom for engineered surveillance. SitMM aims to be usable andaccessible to non-experts and is meant as a working tool forartists and designers alike.

193

NOTE::SitMM builds on a tool called scapy 80 to implement whatis called a network packet sniffer.
Snippets of a Something In The Middle, Maybe - Report
UDP 192.168.42.32:53649 -> 8.8.8.8:53
TCP 192.168.42.32:49250 -> 17.253.53.208:80
TCP 192.168.42.32:49250 -> 17.253.53.208:80
TCP/HTTP 17.253.53.208:80 GET http://captive.apple.com/mDQArB9orEii/Xmql6oYqtUtn/f6xY5snMJcW8/CEm0Ioc1d0d8/9OdEOfkBOY4y.html
TCP 192.168.42.32:49250 -> 17.253.53.208:80
TCP 192.168.42.32:49250 -> 17.253.53.208:80
TCP 192.168.42.32:49250 -> 17.253.53.208:80
UDP 192.168.42.32:63872 -> 8.8.8.8:53
UDP 192.168.42.32:61346 -> 8.8.8.8:53
...
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443

##
Destination Address: 17.253.53.208
Destination Name: nlams2-vip-bx-008.aaplimg.com

Port: Connection Count
80: 6

##
Destination Address: 17.134.127.79
Destination Name: unknown

Port: Connection Count
443: 2

##
Destination Address: 17.248.145.76

80 http://www.secdev.org/projects/scapy/

194

Destination Name: unknown

Port: Connection Count
443: 16

https://github.com/AlternativeLearningTank/Somet
hingInTheMiddle/

SitMM emerges from the itinerating practice of Luis Rodil-Fernandez,
crossed with those of Jogi Hofmueller, BalkonTactics and the
Alternative Learning Tank. SitMM is deeply indebted to projects that
have served as inpiration such as Dowse http://dowse.e
quipment/ , alt.exit http://alternativelearningtank
.net/ and the NetAidKit https://netaidkit.net/ . http
://observatory.constantvzw.org/SomethingInTheMid
dle/

195

What is it like to beAN ELEVATOR*?

NOTE::(*) Where this method refers to AN ELEVATOR, the nameof any comparable software system may be substituted.

WHAT:: Understanding software systems by becoming them.

HOW::Creating a flowchart to incarnate a software systemyou use everyday.

196

WARNING::Uninformed members of the public may panicwhen confronted with a software performance in a closedspace.

XAMPLE:: What is it like to be an elevator?

197

what

is

it

like

to be

an

elevator?

"from 25th floor to 1st floor"

light on button light of 25th floor

check current floor

if current floor is 25th floor

no

if current floor is ...

go one floor up

... smaller than 25th floor

go one floor down

... bigger than 25th floor

stop elevator

turn button light off of 25th floor

turn door light on

open door of elevator

play sound opening sequence

yes

start

user pressed button of 25th floor

close door of elevator

if door is closed

user pressed 1st floor button

198

start timer for door closing

if timer is running more than three seconds

yes

yes

light on button

go one floor down

no

if current floor is 1st floor

update floor indicator

check current floor

stop elevator

no

yes

light off button

turn door light on

open door of elevator

play sound opening sequence

end

update floor indicator

What is it like to be ? was developed by Joseph Knierzinger, Michaela
Lakova + other members of the SSOGY group.

199

light on button light of 25th floor

check current floor

if current floor is 25th floor no

if current floor is ...

go one floor up

... smaller than 25th floor

go one floor down

... bigger than 25th floor

stop elevator

turn button light off of 25th floor

turn door light on

open door of elevator

play sound opening sequence

yes

start

user pressed button of 25th floor

close door of elevator

if door is closed

user pressed 1st floor buttonstart timer for door closing

if timer is running more than three seconds yes

yes

light on button

go one floor down

no

if current floor is 1st floor

update floor indicator

check current floor

stop elevator

noyes

light off button

turn door light on

open door of elevator

play sound opening sequence

end

whatisitliketobeanelevator?
"from 25th floor to 1st floor"

update floor indicator

200

light on button light of 25th floor

check current floor

if current floor is 25th floor no

if current floor is ...

go one floor up

... smaller than 25th floor

go one floor down

... bigger than 25th floor

stop elevator

turn button light off of 25th floor

turn door light on

open door of elevator

play sound opening sequence

yes

start

user pressed button of 25th floor

close door of elevator

if door is closed

user pressed 1st floor buttonstart timer for door closing

if timer is running more than three seconds yes

yes

light on button

go one floor down

no

if current floor is 1st floor

update floor indicator

check current floor

stop elevator

noyes

light off button

turn door light on

open door of elevator

play sound opening sequence

end

whatisitliketobeanelevator?
"from 25th floor to 1st floor"

update floor indicator

201

Side ChannelAnalysis
WHAT:: A side channel attack is conducted by takingadvantage of “leakage from boundaries”. They are madepossible by disregarding the abstraction of software into purelogic and focusing on the physical effects of the running ofsoftware which become backdoors to observe its functioning,hence re-affirming the materiality of software.

HOW:: As software runs on hardware, it emanatesradio-magnetic waves, and you can, for example, build anantenna to capture these waves and then by analyzing them,reconstruct what the software is doing.

R E M E M B E R
“Hardware lives in the real world and real world propertieslead to side channels.”

WHO::bad guys/good guys

202

WARNING::engineers are good guys!

This method is inspired by a talk by Thomas De Cnudde from the
COSIC research group at the department of Electrical Engineering,
KULeuven. Notes from his presentation: http://observatory.c
onstantvzw.org/etherdump/side-channel-analysis.d
iff.html

IMAGES:: Thomas De Cnudde from the COSIC research group at
the department of Electrical Engineering, KULeuven P.204

203

204

205

206

Each group will thus contain all the records
pertaining to or embracing a particular
statistical item, and by counting the cards the
numerical value of that item can be readily
ascertained. Having thus separated the
record-cards into general divisions, (and, if
desired, subdivided each group on the same
plan.) any additional series of statistical
items can be compiled either by the further
division or subdivision of the record-cards or
by passing all the cards or certain groups only
through the electrical apparatus. 81

81 Herman Hollerith: “Art of compiling statistics”. US395781 A. Jan. 1889. Visited onJan. 31, 2018, pg.4

207

Compiling a bestiaryof software logos
WHAT:: The visual culture of software has relied heavily onanimal representations since the early days of GNU/Linux. Thistendency was cemented into a tradition through theline-drawings used on the covers of the ubiquitous O’Reillypublications 82. What actors are populating the realm of softwareobservation, and to what effect?

Compile a collection of logos and note the metaphors for obser-vation and their surrounding vocabularies. How are different rela-tions between observers and objects of observation establishedthrough a combination of vocabularies and images?
This Bestiary was initiated during Testing the testbed, a two-dayworkshop intended to critically evaluate the Internet of Things
(IoT) Inspector, a testsuite for embedded devices proposed bythe Princeton University’s Center for Information Technology andPolicy (CITP). Participants from Constant, Dyne:BXL, COSIC Leu-ven and others gathered to test the testbed with the help of theircameras, smartphones, and other “things”. As we compared dif-ferent hard- and software set-ups for observing dataflows in IoTenvironments, we noticed that many of them were representedby animals and other agents with human traits that would performthe job of looking, analysing, inspecting and investigating. Here,we have expanded the initial collection to address network obser-vation in general. What does it mean to “look” at the activity in acomputer network? Who or what is looking and in what way?
82 http://animals.oreilly.com/browse

208

Autopsy®

https://www.sleuthkit.org/autopsytags: investigation, dissection, forensics

[legacy] Hound dog with face mask andsurgeon hat.

Doberman dog with black scarf clenching amagnifying glass between his teeth.
“Autopsy® is a digital forensics platform and graphical interfaceto The Sleuth Kit® and other digital forensics tools. It is used bylaw enforcement, military, and corporate examiners to investigatewhat happened on a computer. You can even use it to recoverphotos from your camera’s memory card.”

209

Dowse
http://dowse.eutags: divination, transubstantiation, clairvoyance

Instrument touching or stirring liquid which is held in around receptacle.
“Dowse is a transparent proxy facilitating the awareness of ingo-ing and outgoing connections, from, to, and within a local areanetwork. Dowse provides a central point of soft control for all localtraffic: from ARP traffic (layer 2) to TCP/IP (layers 3 and 4) as wellas application space, by chaining a firewall setup to a transpar-ent proxy setup. A core feature for Dowse is that of hiding all thecomplexity of such a setup.”

210

Ghostery
https://www.ghostery.comtags: ghostbusting, time travel, immaterialization

Friendly bright blue ghost with see-through eyes.
“Faster, safer, and smarter browsing. Ghostery helps you browsesmarter by giving you control over ads and tracking technologiesto speed up page loads, eliminate clutter, and protect your data.”

211

Hovelbot
http://www.constantvzw.org/site/On-Journey-w
ith-Hovelbot,2661.htmltags: exploration, sight-seeing, exquisite corpse

Two pixelated snowy mountains floating between a message ‘enjoy the ride’ (inthree languages).
“Hovelbot is a computer program that, just like Frankenstein’s mon-ster, quietly observes how humans live, in order to learn and beable to share its stories with them. The visitor is asked to connecther phone to a local network. By doing so, the visitor can observehow the hidden activity happening on her device is giving form toHovelbot. In turn, Hovelbot takes its unintentional “teachers” ona journey that, even though it might remind us of the 19th cen-tury romantic pursues, will rather be a confrontation between ournetworked self and the artificial beings that make this network."

212

Iot inspector
http://www.iot-inspector.comtags: rangefinding, voyeurism, scouting

Wireless signal looking through binoculars.
“Detect vulnerabilities in the firmware of IoT devices, no sourcecode required, instant results, comprehensive reporting and alert-ing, covers a broad range of IoT devices, including IP Cameras,Routers, Printers and many more, ISP specific solution for CPEdevices available. Inspection as a service.”

213

Privacy Badger
https://www.eff.org/privacybadgertags: outsmarting, watching you watching me, shielding

Grinning badger looking cheeky.
“Privacy Badger is a browser add-on that stops advertisers andother third-party trackers from secretly tracking where you go andwhat pages you look at on the web. If an advertiser seems to betracking you across multiple websites without your permission,Privacy Badger automatically blocks that advertiser from loadingany more content in your browser. To the advertiser, it’s like yousuddenly disappeared.”

214

The Sleuth Kit®

https://www.sleuthkit.orgtags: inspection, protection, hard-boiled

[legacy] Hound dog with a fedora hat lookingclueless at a laptop.

Hound dog looking fierce and defensive.
“The Sleuth Kit® (TSK) is a library and collection of command linetools that allow you to investigate disk images. The core function-ality of TSK allows you to analyze volume and file system data.The plug-in framework allows you to incorporate additional mod-ules to analyze file contents and build automated systems. Thelibrary can be incorporated into larger digital forensics tools andthe command line tools can be directly used to find evidence.”

215

Little Snitch
https://www.obdev.at/products/littlesnitchtags: tattletaling, whistleblowing

[legacy] A small humanoid figure (it couldalso be a duck?) wearing glasses, a red-bluestriped propeller hat and blowing a whistle.

Orange striped propeller hat, so-called‘geek-attire’.
“As soon as you’re connected to the Internet, applications canpotentially send whatever they want to wherever they want. Mostoften they do this to your benefit. But sometimes, like in case oftracking software, trojans or other malware, they don’t. But youdon’t notice anything, because all of this happens invisibly underthe hood. Little Snitch makes these Internet connections visibleand puts you back in control!”

216

Netflix Stethoscope

http://techblog.netflix.com/2017/02/introducin
g-netflix-stethoscope.htmltags: auscultation, stretching out, diagnostic

Vacantly smiling giraffe carrying astethoscope.

“Netflix is pleased to announce the open source release of Stetho-scope, our first project following a User Focused Security ap-proach. The notion of User Focused Security acknowledges thatattacks against corporate users (e.g., phishing, malware) are theprimary mechanism leading to security incidents and data breach-es, and it’s one of the core principles driving our approach tocorporate information security. It’s also reflective of our philos-ophy that tools are only effective when they consider the truecontext of people’s work. Stethoscope is a web application that

217

collects information for a given user’s devices and gives themclear and specific recommendations for securing their systems. Ifwe provide employees with focused, actionable information andlow-friction tools, we believe they can get their devices into a moresecure state without heavy-handed policy enforcement.”
The Transparency Grenade
https://transparencygrenade.comtags: explosion

Translucent replica of a Soviet F1 Hand Grenade.
“The lack of Corporate and Governmental transparency has beena topic of much controversy in recent years, yet our only tool forencouraging greater openness is the slow, tedious process ofpolicy reform. Presented in the form of a Soviet F1 Hand Grenade,the Transparency Grenade is an iconic cure for these frustrations,making the process of leaking information from closed meetingsas easy as pulling a pin.”

218

Wireshark
https://www.wireshark.org/tags: knifing through, smelling blood, sinking teeth

Shark fin cutting through ocean waves.
“Wireshark is the world’s foremost and widely-used network proto-col analyzer. It lets you see what’s happening on your network at amicroscopic level and is the de facto (and often de jure) standardacross many commercial and non-profit enterprises, governmentagencies, and educational institutions. Wireshark developmentthrives thanks to the volunteer contributions of networking expertsaround the globe and is the continuation of a project started byGerald Combs in 1998.”

P.106
SEE ALSO::Glossaries as an exercise

P.220
SEE ALSO::Testing the testbed: testing software with observatory ambitions(SWOA)

219

Testing the testbed:testing software withobservatoryambitions (SWOA)
WHAT:: Observing Software With Observatory Ambitions(SWOA).

HOW:: The interwebs hosts many projects that aim toproduce software for observing software, or simply Software withObservatory Ambitions. A comparative methodology can beproduced by testing different SWOA to observe software ofinterest. Comparing SWOA reveals what is considered as worthyof observation (e.g., what protocols, what space, which devices),the granularity of the observation (e.g., how is the observationcaptured, in what detail), the logo and conceptual framework ofchoice that underlies the SWOA, as well as its architecture (e.g.,gradware, SWOA as a service). Observing SWOAs puts theirobservatory ambitions to the test. It enables an analysis of whatis made transparent, what is made invisible, and how, as a result,SWOAs can reconfigure power.

220

WHEN:: Ideally, SWOA can be comparatively observedwhenever you feel the urge.

WARNING:: Institutions, laws, and administrators like tolimit the use of SWOA to people who are running these net-works. Hence, we are presented with the situation that theuse of SWOA is condoned when it is done by researchersand pen testers (i.e., they were hired) and shunned whendone by others (often subject to name-calling as hackers orattackers). This may hamper your ability to observe SWOAat work.

WHO:: If you can run multiple SWOAs, you can do it.

WARNING::We find that observation can surface powerasymmetries and lead to defensiveness or desires to escapethe observation in the case of the observed, or an instinct totry to conceal that observation is taking place. Will peoplelike it if you turn your gaze on their SWOA?

NOTE::Good SWOA uses an animal as a logo.

221

WARNING:: Many of the SWOA projects we looked atare promises more than running software or available code.Much of it is obsolete gradware, making observation difficult.

R E M E M B E R
Most software has a recursive observatory ambition (it wantsto be observed in its execution, output etc.). Debuggers,logs, dashboards are all instances of software with observa-tory ambitions. Continuous integration is the act of foldingthe whole software development process into one big feed-back loop. So, what separates SWOA from software itself?Is it the intention of observing software with a critical, agonis-tic or adversarial perspective vs. one focused on productivityand efficiency?

222

The “original testbed” was proposed by collaborators at Princeton
University. Testing this particular testbed happened at a workshop in
Brussels organized by Constant[ˆ]{http://constantvzw.org/s
ite/Testing-the-testbed,2739.html}.

XAMPLE:: To elucidate this method further, one can take alook at the [Something in the Middle Maybe], which is aninstance of a SWOA. To complete a comparative analysis usedifferent sniffing software to observe wireless networks, e.g.,wireshark vs tcpdump vs SitMM.

P.208
SEE ALSO::Compiling a bestiary of software logos

P.191
SEE ALSO::Something in the Middle Maybe (SitMM)

223

Prepare a Reader tothink theory withsoftware
WHAT:: Compile a collection of texts about software.

HOW::Choose texts from different areas. Softwareobservations are mostly done in the realm of the technologicaland the pragmatic. The ecology of texts around software includesfirst and foremost manuals, technical documentation, andacademic papers by software engineers which all live in differentrealms of expertise. More recently, the field of software studiesopened up additional perspectives fuelled by cultural studies andsometimes philosophy. A Reader allows all of these differentkinds of text to intersect and intermingle. It helps to understandthe many types of vocabularies that exist around software, andto see what types of observation each of them invites.

NOTE::Selected quotes from the reader are used to introduceeach of the chapter headers in this guide.
Chapters and index from the Techno Galactic Software Observatory
reader:

224

I. WHAT IS SOFTWARE
Viewing software in the long-term context of historical ‘numericalartefacts’ is an occasion to reflect on the conditions of its ap-pearance, and allows us to take on current-day questions from agenealogical perspective. What is software? How did it appear asa concept, in what industrial and governmental circumstances?The selected texts explore the materiality of software, its relationto hardware, language, discourse and abstraction with each theirown way of questioning and proposing agendas and assumptions.
• Herman Hollerith. Art of compiling statistics. U.S. Patent 395,781filed June 18, 1887, and issued January 8, 1889.• Jean-François Blanchette. “A material history of bits.” JASIST62, 1042-1057. 2011.• David A. Patterson and John L. Hennessy. Computer Organizationand Design, Fifth Edition: The Hardware/Software Interface(5th ed.). Morgan Kaufmann Publishers Inc, 2013• Friedrich Kittler, “There Is No Software,” Ctheory (October 18,1995)• Thomas Haigh, Mark Priestley, Crispin Rope, Reconsideringthe Stored-Program Concept, IEEE Annals of the History ofComputing Volume 36, Number 1, January-March 2014• Wendy Hui Kyong Chun. “Programmability.” In Software Studies:A Lexicon, edited by Matthew Fuller, 224–229. MIT Press,2008• Sadie Plant, Zeros + Ones: Digital Women + The New Technoculture.Fourth Estate, 1997• David Nofre, Mark Priestley, Gerard Alberts, When TechnologyBecame Language: The Origins of the Linguistic Conceptionof Computer Programming, 1950-1960. in Technology andCulture, 55(1), 40-75. 2014• Graham White. Hardware, Software, Humans: Truth, Fictionand Abstraction. HISTORY AND PHILOSOPHY OF LOGICvol. 36, (3) 278-301. 2015.

225

II. WHEN AND WHERE IS SOFTWARE
How do layers of abstraction have an effect on the way softwareis produced and vice versa? What is the space-time dimension ofIT development or where and when is software made today? Theway computer programs and operating systems are manufacturedchanged tremendously through time, so its production times andplaces changed too. From military labs via the mega-corporationcubicles to the open-space freelancer utopia, the texts in thischapter trace the ruptures and continuities in software production.From time-sharing to user-space partitions and containerization,this chapter looks at the separations at work. What happens to thematerial conditions of software production (factory labor, hardwarebut also minerals) when it evaporates into a cloud?
• John Harwood, The Interface: IBM and the Transformation ofCorporate Design, 1945-1976. University of Minnesota Press,2011• Nathan Ensmenger, The Computer Boys Take Over: Computers,Programmers, and the Politics of Technical Expertise, 2010• Ellen Ullman, Close to the Machine: Technophilia and Its Dis-contents. City Lights Books, 1997• Femke Snelting. Dividing and sharing. 2009• Hamid Ekbia and Bonnie Nardi, Heteromation and its (dis)contents:The invisible division of labor between humans and machines.First Monday 19(6) · June 2014• Richard Stallman, Who does that server really serve?. 2016• Critisticuffs. Free Property - On Social Criticism in the Form ofa Software Licence. 2013• Seda Gurses and Joris van Hoboken. “Privacy after the AgileTurn.” Open Science Framework, 2016.• Christoph Neubert, “The Tail on the Hard-ware Dog”: HistoricalArticulations of Computing Machinery, Software, and Servicesin Irina Kaldrak and Martina Leeker, There is not software,there are just services. 2015

226

III. OBSERVATION AND ITS CONSEQUENCES

The development of software encompasses a series of practiceswhose evocative names are increasingly familiar: feedback, re-port, probe, audit, inspect, scan, diagnose, explore . . . What arethe systems of knowledge and power within which these activi-ties take place, and what other types of observation are possible?The material in this section is a compendium of probes such aslearning by doing; exploring software through the analysis of itslanguage and grammar; critical ethnography and self-testing as auser. In addition, we have included some conventional methodsand tools for increasing the performance and security of software.Appropriating them for Techno-galactic software observation firstof all turns the gaze onto the process of observation itself, andeventually opens up possibilities to actively interfere with the func-tioning of software.
• Lilly Irani, Hackathons and the Making of Entrepreneurial Citi-zenship, 2015• Kara Pernice (Nielsen Norman Group), Talking with ParticipantsDuring a Usability Test, January 26, 2014,• Matthew G. Kirschenbaum, Extreme Inscription: Towards aGrammatology of the Hard Drive. 2004• Alexander R. Galloway, The Poverty of Philosophy: Realismand Post-Fordism, Critical Inquiry. 2013• Edward Alcosser, James P. Phillips, Allen M. Wolk, How toBuild a Working Digital Computer. Hayden Book Company,1968• Matthew Fuller, “It looks like you’re writing a letter: MicrosoftWord”, Nettime, 5 Sep 2000• Barbara P. Aichinger, DDR Memory Errors Caused by RowHammer. 2015• Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B.Lee. Last-Level Cache Side-Channel Attacks are Practical.2015

227

6 Sheets Sheet 1,

H. HOL'LERITHî

ART 0F GOMHLING STATISTICS'.

(No Model.)

No. 395,7 81. Patented Ja11.«8, 1889.

Ñ

„OOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOO

\\Q .

OOOOOOOOOOOOOOOOOOOOO
OOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOO
OOOOOOO

OOOOOOOOOOOOOO
OOOOOOOOOOO

@GOOG
OOMOOOOOOOOOOGO

OGOOOOOOOOOOO
OOO

ooooooooooeoooo
OOOOOOOOOOOOOO

OOOOOOGOOOOOOOOOO
OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOG OOOOOGOOOOOOOOOOOOO

.N .New

OOOOOOOOOOOOO.
/

M „W

N. PETERS. mœlhbognphen wuhingtm. (LC.

(No Medel.) l . s sheets-_sheen 2.

H. HOLLERITH. '

. ART 0F COMPILING STATISTICS.. '

'.N'e. 895,781. . Patented Jen18, 1889.

4

mimms' ¿M
 Ä, ¿ef/1A.V /

6 Sheets-SheetI _3.
’ (Nov'Model.) H HOLLBRITH

ART 0F COMPILING STATISTICS..

Patented Jan. 8, 188:9..

1727. 6.

l(No Model.) - _ « '- . -_ H. îiïOLLBRITH.v

6 Sheets-Sheet 4.

ART 0T _GOMPTLTNG STATISTICS.
I Patented Jan. 8', 1889.,

TT TÃ@
No. 395.781.

Ö.

. M

Patent: H. Hollerith. Art of compiling statistics

228

Anti-copyright for non-commercial publication.

Copyright 2003 Matthew F d e r otherwise.

All rights reserved.

Autonomedia

P,O.B. 568 Williamsburgh Station

Brooklyn, NY 11211-0568 USA

Phone & Fax: 718-963-2603

email: inf o@autonomedia.org

htsttp:llwww.autonomedia.org

Book design: Dave Mandl

ISBN 1-57027-1 39-9

Printed in Canada

For Mandie, Leon, Milo, and Rosa

Cyberpunk meets software studies: Matthew Fuller, “It looks like you’re writing aletter: Microsoft Word”

229

Original Article

Hackathons
and the Making
of Entrepreneurial
Citizenship

Lilly Irani1

Abstract

Today the halls of Technology, Entertainment, and Design (TED) and Davos

reverberate with optimism that hacking, brainstorming, and crowdsourcing

can transform citizenship, development, and education alike. This article

examines these claims ethnographically and historically with an eye toward

the kinds of social orders such practices produce. This article focuses on a

hackathon, one emblematic site of social practice where techniques from

information technology (IT) production become ways of remaking culture.
Hackathons sometimes produce technologies, and they always, however,

produce subjects. This article argues that the hackathon rehearses an

entrepreneurial citizenship celebrated in transnational cultures that orient

toward Silicon Valley for models of social change. Such optimistic, high-

velocity practice aligns, in India, with middle-class politics that favor quick

and forceful action with socially similar collaborators over the contestations

of mass democracy or the slow construction of coalition across difference.

1Department of Communication and Science Studies Program, University of California, San

Diego, La Jolla, CA, USA

Corresponding Author:

Lilly Irani, Department of Communication and Science Studies Program, University of

California, San Diego, 9500 Gilman Dr #0503, La Jolla, CA 92093, USA.

Email: lirani@ucsd.edu

Science, Technology, & Human Values

1-26

ª The Author(s) 2015

Reprints and permission:

sagepub.com/journalsPermissions.nav

DOI: 10.1177/0162243915578486

sthv.sagepub.com

 at RUTGERS UNIV on June 8, 2015sth.sagepub.comDownloaded from

Keywords

development, futures, entrepreneurialism, citizenship, technology

Introduction

In the last decade, work practices associated with software production have

come to signify collaboration, voluntarism, optimism, and wealth, tested in

software practice and ready to enter new domains of public life. Ex-Wired

editor Chris Anderson (2012) wrote:

The past ten years have been about discovering new ways to create, invent,

and work together on the Web. The next ten years will be about applying

those lessons to the real world.

Anderson’s prediction—one which he pursues through his own enterprises

in innovation evangelism—voices a broader enthusiasm for bringing Sili-

con Valley’s practices of hacking, designing, and crowdsourcing to the

practice of public life. This celebration of scientific and engineering ethos

in everyday life in the United States and Europe lags behind formerly

colonized countries like India, where modernizing nationalists have long

held up scientists and engineers as model citizens (S. Roy 2007; Abraham

2006). Scientific and technological practices do not only make knowledge

and things, people also draw on the legitimacy of technoscience to

remake culture.

This article focuses on a hackathon, one emblematic site of social

practice where techniques from the Web make their way into ‘‘the real

world.’’ Hackathons bring software programmers and designers together

for multiday, voluntary software production sprints. Although hackathons

ostensibly produce ‘‘demos’’ (software prototypes), this article argues that

hackathons more powerfully produce entrepreneurial subjects. They man-

ufacture urgency and an optimism that bursts of doing and making can

change the world. Participants in hackathons imagine themselves as

agents of social progress through software, and these middle-class efforts

to remake culture draw legitimacy from the global prestige of technology

industry work practices. The article uses ethnographic and historical

methods to make the case.

Hackathons sometimes produce technologies, and they always, however,

produce subjects. Science and technology studies (STS) has long examined

the subjects and social orders reproduced and valorized in practices of

2 Science, Technology, & Human Values

 at RUTGERS UNIV on June 8, 2015sth.sagepub.comDownloaded from

Science studies ethnography: Lilly Irani, Hackathons and the Making ofEntrepreneurial Citizenship

230

Number 2, 2004 TEXT Technology 91

Extreme Inscription: Towards a Grammatology of the
Hard Drive1

Matthew G. Kirschenbaum
University of Maryland
mgk@umd.edu

Abstract

“Extreme Inscription” attempts to articulate the grammatological primi-

tives of the hard drive, the inscription technology that has had the single

greatest impact on computing in the latter half of the 20th century. Rather

than offer up yet another generalized account of electronic textuality, my

objective in this essay is to examine one speciic writing machine in its
unique social, technical, and imaginative milieu. Random access disk stor-

age, I argue, is the technology that embodies the “database paradigm” a

critic such as Lev Manovich sees as fundamental to new media. The his-

tory of hard drive technology is treated in the essay, as is the cultural

impact of new hard drive-based technologies like iPod, TiVo, and Gmail’s
massive multi-gigabyte quotas. Ultimately the article seeks to establish a

place for the often invisible and certainly unglamorous presence of stor-

age technologies amid the largely visual and screen-based approaches

that currently prevail in new media theory.

“Had however this friction really existed, in the many cen-

turies that these heavens have revolved they would have

been consumed by their own immense speed of every day

... we arrive therefore at the conclusion that the friction

would have rubbed away the boundaries of each heaven,

and in proportion as its movement is swifter towards the

center than toward the poles it would be more consumed

in the center than at the poles, and then there would not

be friction anymore, and the sound would cease, and the

dancers would stop ...”

--Leonardo da Vinci, The Notebooks, F 56 V

“One Monday morning, one of my customers had their

WIN NT 3.51 server hard drive crash. It was a head crash,

you could hear the heads riding the platter. An awful noise

Number 2, 2004 TEXT Technology 92

... I spent 16 hours pulling data from that hard drive, and

once I was done (I had pulled as much data as I could)

we opened up the drive to discover that the head on the

bottom platter had fallen down, and had been riding there

over the weekend. It had etched away at the platter for so

long that the platter had actually fallen down and was sit-

ting in a pile of ... shavings at the bottom of the drive.”

-- Posted to Slashdot.org by JRHelgeson, Monday Octo-

ber 06, 2003 @12:58PM

As a written trace digital inscription is invisible to the eye, but it is not

instrumentally undetectable or physically immaterial. Saying so is not a

theoretical proposition but a discernible fact, born of the observable behav-

ior of some 8.5 million terabytes of storage capacity brought to market in

one recent year alone.2

I am referring to the devices we call hard drives. The hard drive

and magnetic media more generally are mechanisms of extreme

inscription -- that is, they offer a practical limit case for how the inscriptive

act can be imagined and executed. To examine the hard drive at this level

is to enter a looking glass world where the Kantian manifold of space and

time is measured in millionths of a meter (called microns) and thousandths

of a second (milliseconds), a world of leading-edge engineering rooted

in the ancient science of tribology -- the study of interacting surfaces in

relative motion. Rather than offer up yet another generalized account of

electronic textuality, my objective in this essay is to examine one speciic
digital writing technology in its unique social, technical, and imagina-

tive milieu, and thereby connect to the new histories of inscription being

pursued by such diverse critics as Friedrich Kittler, Lisa Gitelman, Bruce

Clarke, Bruno Latour, Timothy Lenoir, Patricia Crain, and Adrian Johns.3

Put another way, “the computer” as a generic appellation is not adequate

as a starting point for the kind of investigation of electronic writing I have

in mind, any more than “the book,” conceived as a homogenous form,

sufices for serious students of earlier periods of textuality. Here we will
follow the bits all the way down to the metal.4

As students of old new media such as Friedrich Kittler or more

recently Lisa Gitelman see so clearly, writing for quite some time now

has meant more than alphabetization, and writing machines do more than

make and mark letterforms. One way of understanding a writing technol-

ogy, notes Gitelman, is as an artifact of a culture’s “consensual, embodied

Media studies: Matthew G. Kirschenbaum, Extreme Inscription: Towards aGrammatology of the Hard Drive.

231

Technical presentation slides: Barbara P. Aichinger, DDR Memory ErrorsCaused by Row Hammer

232

P.49
SEE ALSO:: Ask several people from different fields and agegroups the same question: "What is software?"

The Technogalactic Software Observatory reader can be consulted
here: http://pad.constantvzw.org/p/observatory.rea
der

233

Keyword Index

Abstraction, 56, 202, 225, 226
Abuse, 11
Accident, 47, 163
Agility, 5, 108, 135–137, 139, 141–

144, 165, 168, 226
Air, 98, 141, 143, 144, 170
Algorithm, 175, 182
Ambiguity, 49, 114, 193
Assembly, 31, 35, 44
Attack, 108, 191, 202
BeOS, 124, 126
Binary, 18, 50, 154
Bits, 50, 225
Bounce, 108, 170
Bug, 108, 150, 151
Bull, 18, 29
Bullshit, 156, 159
Bytes, 50
Catastrophe, 122
Cobol, 44
Colonialism, 5, 108
Command line, 108
Compilation, 33, 37, 45, 106, 108,

208, 224, 225, 228
Control, 15, 71, 210, 211, 216
Convenience, 65, 69, 70, 102, 108,

141
Cost, 41, 61, 112, 122–124, 129,

131
Crash, 108

Critique, 3, 4, 6–9, 16, 150, 156,
222, 227

Debugging, 56, 150, 174, 186, 222
DecAlpha, 126
Decentralization, 167
Digital Equipment Corporation, 39,

42
Dirty, 108, 151, 153–155
Emotion, 30, 89, 108, 119, 129,

163
Error, 31, 35, 40, 151, 155, 168
etherbox, 50, 98, 147, 153, 155,

186
Ethics, 122
Executable, 15, 41, 52, 62
File, 37, 50, 52–54, 56, 57, 59, 93,

95, 96, 104, 114, 115,
120, 123, 129, 151,
153–155, 159, 172,
177, 182, 215

File system, 50, 53, 151, 153
Flow, 3, 4, 94, 108, 166, 172, 175,

179, 182–184
Fortran, 31, 35, 36, 44
Free Software, 124, 129, 130
Friendly, 42, 45, 46, 147, 211
Gesture, 162
Ghost, 5, 211

236

Glitch, 147
Habit, 122
Hard-boiled, 150, 215
Healing, 156
Hexadecimal, 50
History, 30, 31, 43, 96, 101, 122,

131, 225
IBM, 37–39, 43, 44, 61, 178, 182,

226
Idiosyncracy, 172
Incarnation, 196
Inspection as a Service, 189
Integration, 167, 168, 170, 222
Interface, 6, 29, 47, 53, 61, 156,

157, 159, 160, 209,
225, 226

Internet of Things, 208, 213
Intimacy, 57, 69, 108, 120
IRIX, 126
JAVA, 44, 46, 47
Kernel, 45, 53, 58, 62, 92, 93, 108
Linux, 45, 53, 62, 63, 93, 96, 126,

129, 130, 208
MacOS, 126
Magic, 33, 45, 101, 108, 156
Mainframe, 37, 39, 42, 61
Materiality, 71, 124, 184, 193, 202,

225–227
Measuring, 89, 90, 92, 97

Military, 191, 209, 226
Minitel, 43
Misunderstanding, 11
Musée de l’Informatique Pionnière

en Belgique, 18, 26,
29, 50, 178

Noise, 64, 65, 69, 94, 109
Obfuscation, 172
Office, 35, 40, 64, 65, 69, 70, 98
Panic, 197
Parody, 156
Passive-aggressive, 109
PDP11, 40
Perl, 44, 47
PL-1, 44
Poetry, 156, 193
Problems, 40, 120, 121, 126, 159
Productivity, 3, 5, 6, 79, 83, 115,

129, 165, 222, 226
Professionalism, 6, 70, 126, 139,

141
Promiscuity, 109, 171, 172, 191
Reconfiguration, 167
Relational, 5, 30, 109, 121, 123,

126, 129, 131, 175,
208

Relaxation, 64, 94, 141
RK07, 40
Scroll, 79, 83, 109
Scrum, 109, 136, 141, 143
Separation, 57, 62, 120, 207, 226

237

Silence, 65, 69, 109
Software as a Critique as a

Service, 8, 9
Software as a Service, 3
Software with Observatory

Ambitions, 220–223
Solaris, 126
Statistics, 207, 225, 233
Stress, 103
Success, 15, 170
SunOS, 126
Surveillance, 191, 193
Survival, 11, 109
System memory, 52, 58, 124

TCP/IP, 43, 210
Terms of use, 40, 106, 115, 124,

131
Therapy, 120

Time, 4, 11, 17, 26, 31, 35, 36,
39–44, 53, 61–63, 73,
85–87, 89–98, 101,
109, 119, 121, 124,
126, 129, 130, 144,
148, 151, 154, 155,
163, 184, 193, 211,
226

Timeless, 120
Touch, 17, 18, 29, 37, 142, 143,

173, 191, 210
Unix, 39–42, 44–47, 50, 52, 53, 85,

86, 91, 120, 126
Useless, 79, 83, 103, 104, 109
UUCP, 41, 45
VAX, 42
Virtual, 42, 57, 189
Vocabulary, 50, 101, 106, 107,

182, 189
Vulnerability, 3
Windows 95, 33, 45, 126
X/OPEN, 42, 43

238

Read Further!

Bentley, Jon and Don Knuth: Programming Pearls: Literate Programming. In: Commun.
ACM 29.5 (May 1986), pp. 384–369. I S S N: 0001-0782. D O I: 10.1145/5689.315644.
http://doi.acm.org/10.1145/5689.315644.
Content Watch Holdings, Inc.: Protecting Your Family. accessed 7.1.2018. 2018. http
s://www.netnanny.com/products/netnanny/protecting-your-famil
y.
Dijkstra, Edsger W.: A Case against the GOTO Statement. accessed 9.2.2018. 1972. h
ttps://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EW
D215.html.
Dijkstra, Edsger W.: Programming: From craft to scientific discipline. accessed 9.2.2018.1977. https://www.cs.utexas.edu/users/EWD/transcriptions/EWD05
xx/EWD566.html.
Ekbia, Hamid and Bonnie Nardi: Heteromation and its (dis)contents: The invisible di-
vision of labor between humans and machines. en. In: First Monday 19.6 (May 2014).
I S S N: 13960466. http://firstmonday.org/ojs/index.php/fm/article/v
iew/5331 visited on Jan. 31, 2018.
Flanagan, Mary and Helen Nissenbaum: Values at Play in Digital Games. 2014.
Fuller, Matthew: Behind the Blip: Essays on the Culture of Software. English. Brooklyn,NY: Autonomedia, Mar. 2003. I S B N: 978-1-57027-139-7.
Geertz, Clifford: Common Sense as a Cultural System. In: The Antioch Review 33.1(1975), pp. 5–26. I S S N: 00035769.
Haigh, Thomas: Software in the 1960s as Concept, Service, and Product. In: IEEE
Annals of the History of Computing 24.1 (2002), pp. 5–13.
Haraway, Donna: Modest Witness: Feminist Diffractions in Science Studies. In: The
Disunity of Science: Boundaries, Contexts, and Power. Ed. by Peter Galison and DavidJ. Stump. 1996, pp. 428–442.
Harwood, John: The Interface: IBM and the Transformation of Corporate Design, 1945–1976.English. 1 edition. Minneapolis, MN: Univ Of Minnesota Press, Nov. 2011. I S B N: 978-0-8166-7039-0.
Hollerith, Herman: “Art of compiling statistics”. US395781 A. Cooperative ClassificationG06F7/42. Jan. 1889. http://www.google.com/patents/US395781 visitedon Jan. 31, 2018.
Horn, Jann et al.: Meltdown and Spectre Attack. accessed 9.2.2018. 2018. https://
meltdownattack.com.
Hu, Tung-Hui: A Prehistory of the Cloud. MIT Press, 2015.

239

Irani, Lilly: Hackathons and the Making of Entrepreneurial Citizenship. en. In: Science,
Technology, & Human Values 40.5 (Sept. 2015), pp. 799–824. I S S N: 0162-2439, 1552-8251. D O I: 10.1177/0162243915578486. http://journals.sagepub.com/d
oi/10.1177/0162243915578486 visited on Jan. 31, 2018.
Kirschenbaum, Matthew: Extreme Inscription: Towards a Grammatology of the Hard
Drive. In: TEXT Technology 2 (2004). http://texttechnology.mcmaster.ca/
pdf/vol13_2_06.pdf visited on Jan. 31, 2018.
Kruchten, Philippe: Agile’s Teenage Crisis? accessed 7.1.2018. 2011. https://ww
w.infoq.com/articles/agile-teenage-crisis.
Kyong Chun, Wendy Hui: Programmability. In: Software Studies. Ed. by Matthew Fuller.DOI: 10.7551/mitpress/9780262062749.003.0032. 2008, pp. 225–228. I S B N: 978-0-262-06274-9. http://mitpress.universitypressscholarship.com/view
/10.7551/mitpress/9780262062749.001.0001/upso-9780262062749-ch
apter-32 visited on Jan. 31, 2018.
Lammerant, Hans: How Humans and Machines negotiate the Experience of Time. 2017.
http://etherdump.constantvzw.org/p/observatory.guide.experienc
ingtime.diff.html.
Lau, Justin and Xing: Understanding Flowcharts. 2009. http://odec.ca/project
s/2009/xing9t2/hist.htm.
Liu, F. et al.: “Last-Level Cache Side-Channel Attacks are Practical”. In: 2015 IEEE
Symposium on Security and Privacy. May 2015, pp. 605–622. D O I: 10.1109/SP.
2015.43.
Marx, Karl and Friedrich Engels: The communist manifesto. Penguin, 2002.
Neubert, Christoph: The Tail on the Hardware Dog. English. In: There is no Software,
there are just Services. Ed. by Irina Kaldrack and Martina Leeker. Lüneburg, 2015,pp. 21 –37. I S B N: 978-3-95796-055-9.
Nofre, David, Mark Priestley, and Gerard Alberts: When Technology Became Language:
The Origins of the Linguistic Conception of Computer Programming, 1950–1960. en.In: Technology and Culture 55.1 (Mar. 2014), pp. 40–75. I S S N: 1097-3729. D O I: 10.
1353/tech.2014.0031. https://muse.jhu.edu/article/538908 visited onJan. 31, 2018.
Patterson, David A. and John L. Hennessy: Computer Organization and Design MIPS
Edition, Fifth Edition: The Hardware/Software Interface. English. 5 edition. Amsterdam; Boston: Morgan Kaufmann, Oct. 2013. I S B N: 978-0-12-407726-3.
Pernice, Kara: Talking with Users in a Usability Test. en. 2014. https://www.nngr
oup.com/articles/talking-to-users/ visited on Jan. 31, 2018.
Plant, Sadie: Zeroes and Ones: Digital Women and the New Technoculture. English.1st edition. New York: Doubleday, Sept. 1997. I S B N: 978-0-385-48260-8.

240

Stallman, Richard: What Does That Server Really Serve? en. June 2012. http://bos
tonreview.net/richard-stallman-free-software-DRM visited on Jan. 31,2018.
TechMission UrbanMinistry.org: SafeFamilies.org | Accountability Software: Encyclope-
dia of Urban Ministry. accessed 7.1.2018. 2018. http://www.urbanministry.
org/node/4902.
Techno-Galactic Software Observatory: Introduction to file therapy. 2017. http://ob
servatory.constantvzw.org/etherdump/clinic.file_therapy.md.di
ff.html.
Techno-Galactic Software Observatory: Notes from the Observatory on glossaries and
vocabularies. 2017. http://observatory.constantvzw.org/etherdump/vo
cabulary.md.diff.html.
Techno-Galactic Software Observatory: Notes from the Observatory on When and
Where is Software. 2017. http://observatory.constantvzw.org/etherdum
p/saturday.diff.html.
time was written by David MacKenzie. The man page was added by DirkEddelbuettel:
TIME(1) General Commands Manual. http://freeze.sh/man/time.
Ullman, Ellen: Close to the Machine: Technophilia and Its Discontents. English. Reprintedition. New York: Picador, Feb. 2012. I S B N: 978-1-250-00248-8.
websense.com: Explicit and transparent proxy deployments. accessed 7.1.2018 viawaybackmachine (18.4.2012). 2012. https://web.archive.org/web/2012041
8150020/http://www.websense.com/content/support/library/web/
v75/wcg_deploy/WCG_Deploy.1.3.aspx.
Wikipedia contributors: Agile software development — Wikipedia, The Free Encyclope-
dia. accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.php?ti
tle=Agile_software_development&oldid=818894701.
Wikipedia contributors: Content-control software — Wikipedia, The Free Encyclopedia.accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.php?title
=Content-control_software&oldid=818780033.
Wikipedia contributors: Lernaean Hydra — Wikipedia, The Free Encyclopedia. ac-cessed 7.2.2018. 2018. https://en.wikipedia.org/w/index.php?title=
Lernaean_Hydra&oldid=812030608.
Wikipedia contributors: Scrum (software development) — Wikipedia, The Free Ency-
clopedia. accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.ph
p?title=Scrum_(software_development)&oldid=816207177.
Wikipedia contributors: The Manifesto for Agile Software Development. accessed 7.1.2018.2018. https://en.wikipedia.org/w/index.php?title=Agile_software
_development&oldid=818894701#The_Agile_Manifesto.
workrave.org: Frequently Asked Questions. accessed 7.1.2018. 2018. http://www.
workrave.org/documentation/faq.

241

The Techno-Galactic Guide to Software Observationwas compiled by Carlin Wing, Martino Morandi,Peggy Pierrot, Anita Burato, Christoph Haag,Michael Murtaugh, Femke Snelting, Seda Gürsesand includes contributions from Manetta Berends,Željko Blaće, Larisa Blazic, Freyja van den Boom,Anna Carvalho, Loup Cellard, Joana Chicau,Cristina Cochior, Pieter Heremans, Joak akaJoseph Knierzinger, Jogi Hofmüller, Becky Kazansky,Anne Laforet, Ricardo Lafuente, Michaela Lakova,Hans Lammerant, Silvio Lorusso, Mia Melvaer,An Mertens, Lidia Pereira, Donatella Portoghese,Luis Rodil-Fernandez, Natacha Roussel,Andrea di Serego Alighieri, Lonneke van der Velden,Ruben van de Ven, Kym Ward,Wendy Van Wynsberghe and Peter Westenberg.
Techno-Galactic Software Observation team,WTC Brussels, June 2017 (P.243)
Copy editing: Carlin Wing
Layout, document engineering
and bespoke finish: Christoph Haag
Photography: Michaela Lakova, Michael Murtaugh,Peter Westenberg, Donatella Portoghese
Printing: Online-Druck.biz, Krumbach (Schwaben)
Published by: Constant, Association for Art and Media,Brussels (2018) ISBN: 978-9-08114-596-1
License: Free Art License (P.248)

http://observatory.constantvzw.org
http://gitlab.constantvzw.org/ch/observatory.guide

242

243

Notes on Layout:

Typesetting this guide is part of an ongoing exploration of doc-ument engineering along with ideas of lightweight markup lan-guages and infinite rubber lengths. While moving through inter-faces of digital editing, transplanting paradigms, experiencing lim-itations and possibilities, it seems not like an end is in sight. Toput it in the spirit of illiterate programming: When was the last time
you spent a pleasant evening in a comfortable chair, cuddling with
a multi-headed monster. 83

https://freeze.sh/_/2018/tgso

The fonts used in this guide were prepared to be integrated intothe Techno-Galactic LaTeX Toolchain and are available via the
fontain font collection.
https://fontain.org/arimo
https://fontain.org/plexmono
https://fontain.org/iaduospace
https://fontain.org/pxpcgathin

Arimo is a sans serif typeface developed by Steve Matteson 84
and released under the Apache 2.0 License. Together with Tinos(serif) and Cousine (monospace) it provides the Chrome OS corefonts, a collection of fonts that are metrically compatible withMonotype Corporation’s Arial, Times New Roman, and CourierNew.

83 Jon Bentley and Don Knuth: Programming Pearls: Literate Programming. In:
Commun. ACM 29.5 (May 1986), pp. 384–369. I S S N: 0001-0782. D O I:
10.1145/5689.31564484 http://www.monotype.com/people/steve-matteson

244

Plex Mono is a monospaced typeface and part of the superfamilyIBM Plex 85, which was developed to replace fifty years of NeueHelvetica as IBM’s corporate typeface. It is released under theSIL Open Font License.
IA Writer Duospace is an adaptation of Plex Mono, aim-ing at better readability while keeping the look and feel 86 of amonospaced typeface. It is released under the SIL Open FontLicense.
CGA Thin is a 8x8 pixel font recreated in truetype format byVileR. 87 It is based on text mode fonts shipped on the characterROM of IBM’s first video solutions. As part of the The Ultimate
Oldschool PC Font Pack it is available according to CreativeCommons Attribution-ShareAlike 4.0 International License.

Support:

85 https://github.com/IBM/plex86 https://ia.net/topics/in-search-of-the-perfect-writing-font87 http://int10h.org

Free Art License 1.3. (C) Copy-
left Attitude, 2007. You can make
reproductions and distribute this
license verbatim (without any
changes). Translation: Jonathan
Clarke, Benjamin Jean, Griselda
Jung, Fanny Mourguet, Antoine
Pitrou. Thanks to framalang.org

PREAMBLE
The Free Art License grants the right to
freely copy, distribute, and transform cre-
ative works without infringing the author’s
rights.
The Free Art License recognizes and pro-
tects these rights. Their implementation
has been reformulated in order to allow ev-
eryone to use creations of the human mind
in a creative manner, regardless of their
types and ways of expression.
While the public’s access to creations of
the human mind usually is restricted by
the implementation of copyright law, it is
favoured by the Free Art License. This li-
cense intends to allow the use of a works
resources; to establish new conditions for
creating in order to increase creation oppor-
tunities. The Free Art License grants the
right to use a work, and acknowledges the
right holders and the users rights and re-
sponsibility.
The invention and development of digi-
tal technologies, Internet and Free Soft-
ware have changed creation methods: cre-
ations of the human mind can obviously be
distributed, exchanged, and transformed.
They allow to produce common works to
which everyone can contribute to the ben-
efit of all.
The main rationale for this Free Art License
is to promote and protect these creations of
the human mind according to the principles
of copyleft: freedom to use, copy, distribute,
transform, and prohibition of exclusive ap-
propriation.

DEFINITIONS
“work ” either means the initial work, the
subsequent works or the common work as
defined hereafter:
“common work” means a work composed
of the initial work and all subsequent contri-
butions to it (originals and copies). The ini-
tial author is the one who, by choosing this
license, defines the conditions under which
contributions are made.
“Initial work ” means the work created by
the initiator of the common work (as defined
above), the copies of which can be modified
by whoever wants to
“Subsequent works” means the contribu-
tions made by authors who participate in
the evolution of the common work by ex-
ercising the rights to reproduce, distribute,
and modify that are granted by the license.
“Originals” (sources or resources of the
work) means all copies of either the initial
work or any subsequent work mentioning
a date and used by their author(s) as ref-
erences for any subsequent updates, inter-
pretations, copies or reproductions.

“Copy ” means any reproduction of an origi-
nal as defined by this license.

OBJECT
The aim of this license is to define the con-
ditions under which one can use this work
freely.

SCOPE
This work is subject to copyright law.
Through this license its author specifies the
extent to which you can copy, distribute, and
modify it.

FREEDOM TO COPY (OR TO MAKE REPRO-
DUCTIONS)
You have the right to copy this work for your-
self, your friends or any other person, what-
ever the technique used.

FREEDOM TO DISTRIBUTE, TO PERFORM
IN PUBLIC
You have the right to distribute copies of
this work; whether modified or not, what-
ever the medium and the place, with or
without any charge, provided that you: at-
tach this license without any modification to
the copies of this work or indicate precisely
where the license can be found, specify to
the recipient the names of the author(s) of
the originals, including yours if you have
modified the work, specify to the recipient
where to access the originals (either initial
or subsequent). The authors of the origi-
nals may, if they wish to, give you the right
to distribute the originals under the same
conditions as the copies.

FREEDOM TO MODIFY
You have the right to modify copies of
the originals (whether initial or subsequent)
provided you comply with the following con-
ditions: all conditions in article 2.2 above, if
you distribute modified copies; indicate that
the work has been modified and, if it is pos-
sible, what kind of modifications have been
made; distribute the subsequent work un-
der the same license or any compatible li-
cense. The author(s) of the original work
may give you the right to modify it under the
same conditions as the copies.

RELATED RIGHTS
Activities giving rise to authors rights and
related rights shall not challenge the rights
granted by this license. For example, this
is the reason why performances must be
subject to the same license or a compati-
ble license. Similarly, integrating the work
in a database, a compilation or an anthol-
ogy shall not prevent anyone from using the
work under the same conditions as those
defined in this license.

INCORPORATION OF THE WORK
Incorporating this work into a larger work
that is not subject to the Free Art License
shall not challenge the rights granted by this
license. If the work can no longer be ac-
cessed apart from the larger work in which
it is incorporated, then incorporation shall
only be allowed under the condition that the
larger work is subject either to the Free Art
License or a compatible license.

COMPATIBILITY
A license is compatible with the Free Art Li-
cense provided: it gives the right to copy,
distribute, and modify copies of the work in-
cluding for commercial purposes and with-
out any other restrictions than those re-
quired by the respect of the other compati-
bility criteria; it ensures proper attribution of
the work to its authors and access to pre-
vious versions of the work when possible;
it recognizes the Free Art License as com-
patible (reciprocity); it requires that changes
made to the work be subject to the same
license or to a license which also meets
these compatibility criteria.

YOUR INTELLECTUAL RIGHTS
This license does not aim at denying your
author’s rights in your contribution or any
related right. By choosing to contribute to
the development of this common work, you
only agree to grant others the same rights
with regard to your contribution as those
you were granted by this license. Confer-
ring these rights does not mean you have
to give up your intellectual rights.

YOUR RESPONSIBILITIES
The freedom to use the work as defined
by the Free Art License (right to copy, dis-
tribute, modify) implies that everyone is re-
sponsible for their own actions.

DURATION OF THE LICENSE
This license takes effect as of your accep-
tance of its terms. The act of copying, dis-
tributing, or modifying the work constitutes
a tacit agreement. This license will remain
in effect for as long as the copyright which is
attached to the work. If you do not respect
the terms of this license, you automatically
lose the rights that it confers. If the legal
status or legislation to which you are sub-
ject makes it impossible for you to respect
the terms of this license, you may not make
use of the rights which it confers.

VARIOUS VERSIONS OF THE LICENSE
This license may undergo periodic modifi-
cations to incorporate improvements by its
authors (instigators of the Copyleft Attitude
movement) by way of new, numbered ver-
sions. You will always have the choice of
accepting the terms contained in the ver-
sion under which the copy of the work was
distributed to you, or alternatively, to use
the provisions of one of the subsequent ver-
sions.

SUB-LICENSING
Sub-licenses are not authorized by this li-
cense. Any person wishing to make use
of the rights that it confers will be directly
bound to the authors of the common work.

LEGAL FRAMEWORK
This license is written with respect to
both French law and the Berne Conven-
tion for the Protection of Literary and Artistic
Works.

248

