A guide to techno-galactic software
observation

I am less interested in the critical practice of reflection, of showing
once-again that emperor has no clothes, than in finding a way to diffract
critical inquiry in order to make difference patterns in a more worldly

way.[?]

The techno-galactic software survival guide that you are holding right now
was collectively produced as an outcome of the Techno-Galactic Software
Observatory. This guide proposes several ways to achieve critical distance
from the seemingly endless software systems that surround us. It offers prac-
tical tools for the tactical (mis)use of software, empowering/enabling users to
resist embedded paradigms and assumptions. It is a collection of methods for
approaching software, experience its myths and realities, its risks and benefits.

With the rise of online services, software use has been increasingly knitted into
production, while suggesting that these roles constitute separate realms. This
has an effect on the way software is used and produced, and radically alters
its operative role in society. The shifts ripple across galaxies, through social
structures, working conditions and personal relations, resulting in a profusion
of apparatuses aspiring to be seamless while optimizing and monetizing indi-
vidual and collective flows of information in line with the interests of a handful
of actors. The diffusion of software services affects the personal, in the form of
intensified identity shaping and self-management. It also affects the public, as
more and more libraries, universities and public infrastructures as well as the
management of public life rely on “solutions” provided by private companies.
Centralizing data flows in the clouds, services blur the last traces of the thin
line that separates bio- from necro-politics.

Given how fast these changes resonate and reproduce, there is a growing
urgency to engage in a critique of software that goes beyond taking a distance,
and that deals with the fact that we are inevitably already entangled. How can
we interact, intervene, respond and think with software? What approaches can
allow us to recognize the agency of different actors, their ways of functioning
and their politics? What methods of observation enable critical inquiry and af-
firmative discord? What techniques can we apply to resurface software where
it has melted into the infrastructure and into the everyday? ??? perhaps smtg
like how to remember that software is at work in circumstances when we tend
to forget about it.??

We are interested in different ways to look at and engage in software, and to
pay attention to the implications of how it is currently probed and scrutinized
as part of its production.

We took on the term of observation for a variety of reasons. We regard observa-
tion as a way to approach software, as one way to organize engagement with
its implications. Observation, or enabling it through intensive data-centric feed-
back mechanisms, is part of the cybernetic principles that underpin current day
software production. Scrutinizing this methodology in its many manifestations,
including in “observatories” — expensive infrastructures of observation troubled
by colonial, imperial traditions and their problematic divisions of nature and
culture. Who gets to observe and who is being observed? Techno-galactic
because we want to extend the observation to include different scales of com-
putation, of software communities and their political economies.

Working with theories of software and computation developed in academia and
elsewhere, our priority is to ground the methods in this guide in hands-on exer-
cises and experiments that might have an effect on how software is done. The
Guide to Techno-Galactic Software Observation offers methods developed in
the context of software production, hacker culture, software studies, computer
science research, Free Software communities, privacy activism, and artistic
practice to experiment with ways to stay with the trouble of software.

The Techno-Galactic Software Observatory

In the summer of 2017, around thirty people gathered in Brussels to explore
practices of proximate critique with and of software in the context of a work-
session

The first two days of The Techno-Galactic Software Observatory included visits
to the Muse de I'Informatique Pionnire en Belgique

The second two days we focused on the space-time dimension of IT devel-
opment. The way computer programs and operating systems are manufac-
tured changed tremendously through time, so its production times and places
changed too. From military labs via the mega-corporation cubicles to the open-
space freelancer utopia, what ruptures and continuities can be traced? From
time-sharing to user-space partitions and containerization, what separations
were and are at work? Where and when is software made today?

The Walk-in Clinic

The last two days at the Techno-galactic software observatory were dedicated
to observation and its consequences. The development of software encom-
passes a series of practices whose evocative names are increasingly familiar:
feedback, report, probe, audit, inspect, scan, diagnose, explore ... What are
the systems of knowledge and power within which these activities take place,
and what other types of observation are possible? As a practical set for our
investigations, we will together set up a walk-in clinic in the basement of the
World Trade Center, where users and developers can arrive on Monday with
software-questions of all kinds.

Do you suffer from the disappearance of your software into the cloud, feel
oppressed by unequal user privilege, or experience the torment of software-
ransom of any sort? Bring your devices and interfaces to the World Trade
Center! With the help of a clear and in-depth session, at the Techno-Galactic
Walk-In Clinic we guarantee immediate results. The Walk-In Clinic provides
free hands-on observations to software curious people of all kinds. A wide
range of professional and amateur practitioners will provide you with Software-
as-a-Critiqgue-as-a-Service on the spot. Available services range from im-
mediate interface critique, collaborative code inspection, data dowsing, var-
ious forms of network analyses, unusability testing, identification of unknown
viruses, risk assessment, opening of black-boxes and more. Free software ob-
servations provided. Last intake at 16:45 (invitation to the Walk-In Clinic, June
2017)

http://observatory.constantvzw.org/images/friday/P10108328..

Figure 0.1: Techno-Galactic Software Observation team, WTC Brussels, June
2017

REFERENCES

N O T E S By naming and describing methods of observing software that we
actively tested at the Techno-Galactic Software Observatory, by nominating
and defining terms for the glossary, and by sharing personal stories of close
encounters with software. Methods for (engaged) observation of software. How
do we name what'’s different about software and observation across time, with-
out rendering the new or the old into an ideal? Methods for inadequate observa-
tion of software [inadequate methods?] but then the things in these groupings
can be arranged/divided by form? like descrptive entries/ exercises/ diagrams/
conversation with/ gloss/

Technogalactic Software Observation
Essentials

WARNING

The survival techniques described in the following guide are to be used at your
own risk in case of emergency regarding software curiosity. The publisher will
not accept any responsability in case of damages caused by misuse, misun-
destanding of instruction or lack of curiosity. By trying the action exposed in
the guide, you accept the responsability of loosing data or altering hardware,
including hard disks, usb key, cloud storage, screens by throwing them on the
floor, or even when falling on the floor with your laptop by tangling your feet in
an entanglement of cables. No arms have been done to human, animal, com-
puters or plants while creating the guide. No firearms or any kind of weapon
is needed in order to survive software.

Just a little bit of patience.

Software observation survival stresses

Physical fitness plays a great part of software observation. Be fit or
CTRL-Quit.

When trying to observe software you might experience stresses as such :

e Anxiety

e Sleep deprivation

e Forgetting about eating
e Loss of time tracking

Can you cope with software ? You have to.

our methods for observation, like mapping, come with their luggage.

See also: http://observatory.constantvzw.org/etherdump/toc.md.diff.html

Close encounters

Method: Encounter several collections of historical hardware back-to-back
Remember:
What:

How:

This can be done by identifying one or more computer museums and visit them
with little time in-between. Visiting a friend with a large basement and lots of
left-over computer equipment can help. Seeing and possibly touching hard-
ware from different contexts (state-administration, business, research, ...), pe-
riods of time, cultural contexts (California, Germany, French-speaking Belgium)
and price ranges allows you to sense the interactions between hardware and
software development.

When:
Urgency:

Note: It's a perfect way to hear people speak about the objects and their
contexts, how they worked or not and how objects are linked one with another.
It's also showing economic and cultural aspects of softwares.

Warning: **DO NOT FOLD, SPINDLE OR MUTILATE**

At one point during the demonstration of a Bull computer, the guide revealed
the system’s “software” — a suitcase sized module with dozens of patch cords.
She made the comment that the term “spaghetti code” (a derogatory expres-
sion about early code usign many “GOTO” statments) had its origin in this
physical arrangement of code as patchings.

Preserving old hardware in order to observe physical manifestation of software.
See software here : we did experienced the incredible possibility of actually
touching software.

Playing with the binary. Bull cards. Happy operator! Punch card plays. “The
highlight of the collection is to revive a real punch card workshop of the 1960s.”

Collection de la Maison des critures d’Informatique & Bible, Maredsous

The particularity of the collection lies in the fact that it's the conservation of
multiple stages of life of a software since its initial computerization until today.
The idea of introducing informatics into the work of working with/on the Bible
(versions in Hebrew, Greek, Latin, and French) dates back to 1971, via punch
card recordings and their memorization on magnetic tape. Then came the step
of analyzing texts using computers.

See also: http://pad.constantvzw.org/p/observatory.guide.jean.heuns

Source: http://www.histoireinform.com/Histoire/+Infos/jmclcadr.htm

Method: Interview people about their histories with software
Remember:

What: Observe personnal narratives around software history. Retrace the
path of relation to software, how it changed during the years and what are
the human access memories that surrounds it. To look at software through
personal relations and emotions. How: Interviews are a good way to do it.

Informal conversations also. When:
Urgency:

Note:

Warning:

Example:

Jean Heuns has been collecting servers, calculators, softwares, magnetic
tapes hard disks for xxx years. Found an agreement for them to be displayed
in the department hallways. Department of Computer sciences - Kul Leuven.

[interview transcription goes here]
See also:

Source:

Method: Ask several people from different fields and age-groups the same
question: "« x Whatissoftware? x *»

Remember: The answers to this question will vary depending on who is asking
it to who.

What: By paying close attention to the answers, and possibly logging them,
observations on the ambiguous place and nature of software can be made.
How:

When:

Urgency:

Note:

Warning:

Example:

Examples:

Jean Huens (system administrator at the department of Computer Science,
KULeuven): “It is difficult to answer the question ‘what is software’, but | know
what is good software”

Thomas Cnudde (hardware designer at ESAT - COSIC, Computer Security
and Industrial Cryptography, KULeuven): “Software is a list of sequential in-
structions! Hardware for me is made of silicon, software a sequence of bits in
a file. But naturally | am biased: I'm a hardware designer so | like to consider
it as unique and special’.

Amal Mahious (Director of NAM-IP, Namur): “This, you have to ask the spe-
cialists.”

*what is software? —the unix filesystem says: it's a file —what is a file? —-in the
filesystem, if you ask xxd: ——it’s a set of hexadecimal bytes ——-what is hex-
adecimal bytes? —— -b it’s a set of binary 01s —if you ask objdump —it’s
a set of instructions —side channel researching also says: —-it’s a set of instruc-
tions —the computer glossary says: —-it's a computer’s programs, plus the pro-

cedure for their use http://etherbox.local/home/pi/video/A_Computer_Glossary.webm#t=02:26

—— a computer’s programs is a set of instrutions for performing computer op-
erations Source Pad on fileflowchart.raw.html !

To answer the question “what is software” depends on the situation, goal, time,
and other contextual influences. Source: Pad on Multiple Software Axes 2

1 http://observatory.constantvzw.org/etherdump/fileflowchart.raw.html

E http://observatory.constantvzw.org/etherdump/multiple-software-axes.md.raw.html

See also: http://pad.constantvzw.org/p/observatory.guide.everyonescp

Source:

Method: FMEM and /DEV/MEM

What: Different ways of exploring your memory (RAM). Because in unix every-
thing is a file, you can access your memory as if it were a file. When:

Urgency: To try and observe the operational level of software, getting closer
to the workings, the instruction-being of an executable/executing file, the way
it is when it is loaded into memory rather than when it sits in the harddisk
Remember: In Unix-like operating systems, a device file or special file is an

interface for a device driver that appears in a file system as if it were an ordi-
nary file. In the early days you could fully access your memory via the memory
device (/dev/mem) but over time the access was more and more restricted in or-
der to avoid malicious processes to directly access the kernel memory. The ker-
nel option CONFIGsT RICTp EV M E Mwasintroducedinkernelversion2.6andupper(2.6.362.6.39, 3.03.8,

HEAD).Soyou'llneedtousethe Linuzkernelmodule fmem : thismodulecreates/dev/ fmemdevice, thatc

/dev/imem tools to explore processes stored in the memory

ps ax | grep process cd /proc/numberoftheprocess cat maps —> check what it
is using
The proc filesystem is a pseudo-filesystem which provides an interface to

kernel data structures. It is commonly mounted at /proc. Most of it is read-only,
but some files allow kernel variables to be changed.

dump to a file—>change something in the file—>dump new to a file—>diff oldfile
newfile

“where am i?”

to find read/write memory addresses of a certain process awk -F “-|” ‘$3 ~ /rw/
{ print $1 77 $2}’ /proc/PID/maps

take the range and drop it to hexdump sudo dd if=/dev/mem bs=1 skip=((16b7526000—
1)) count =((16#b7528000 - 16#7b7526000 + 1)) | hexdump -C

Besides opening the memory dump with an hex editor you can also try and
explore it with other tools or devices. You can open it as a raw image, you
can play it as a sound or perhaps send it directly to your frame-buffer device
(/dev/fb0). Warning: Although your memory may look like/sound like/read like

http://observatory.constantvzw.org/images/Scree

Figure 0.2: Binary visualization example

gibberish, it may contain sensitive information about you and your computer!
Example:

See also: http://pad.constantvzw.org/p/observatory.guide.monopsychism Source:

http://observatory.constantvzw.org/etherdump/files.html

Method: Pan/Monopsychism

What: Reading and writing sectors of memory from/to different computers
How: Shell commands and fmem kernel module Urgency: Memory, even

when it is volatile, is a trace of the processes happening in your computer
in the form of saved information, and is therefore more similar to a file than
to a process. Challenging the file/process divide, sharing memory with oth-
ers will allow a more intimate relation with your and other’s computers. See

also: http://pad.constantvzw.org/p/observatory.guide.devmem Note: The par-

allel allocation and observation of the same memory sector in two different
computers is in a sense the opposite process of machine virtualization, where
the localization of multiple virtual machines in one physical comptuers can
only happen by rigidly separating the memory sectors dedicated to the differ-
ent virtual machines.

Warning: THIS METHOD HAS NOT BEEN TESTED, IT CAN PROBABLY
DAMAGE YOUR RAM MEMORY AND/OR COMPUTER

Example:

First start the fmem kernel module in both computers:

sudo sh fmem/run.sh

Then load part of your computer memory into the other computer via dd and
ssh:

dd if=/dev/fmem bs=1 skip=1000000 count=1000 — ssh user@othercomputer dd of=/dev/f

Or viceversa, load part of another computer’'s memory into yours:

ssh user@othercomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 — dd of=/dev/
Or even, exchange memory between two other computers:

ssh user@firstcomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 — ssh user@sec

pan/monopsychism: (aquinas famously opposed averroes..who’s philosophy
can be interpreted as monopsychist)

shared memory

copying the same memory to different computers
https://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
it could cut through the memory like a worm

or it could go through the memory of different computers one after the other
and take and leave something there

Source: etherpad snippets, code speculation

Temporality

Method: Fountain refreshment
Remember:

What: Augmenting a piece of standardised office equipment designed to dis-
pense water to perform a decorative function. How: Rearranging space as

conditioning observations (WTC vs. Museum vs. University vs. Startup Office
vs. Shifting Walls that became Water Fountains) When:

Urgency: EU-OSHA (European Agency for Safety and Health at Work) Directive
2003/10/EC noise places describes the minimum health and safety require-
ments regarding the exposure of workers to the risks arising from physical
agents (noise). However no current European guidelines exist on the potential
benefitial uses of tactially designed additive noise systems. Note:

Warning:

Example:

The Technogalactic Software Observatory — Comfortable silence, one way
mirrors

A drinking fountain and screens of one-way mirrors as part of the work session
The Technogalactic Software Observatory organised by Constant.

For the past 100 years the western ideal of a corporate landscape has been
has been moving like a pendulum, oscillating between grids of cubicles and
organic, open landscapes, in a near to perfect 25-year rhythm. These days the
changes in office organisation is supplemented by sound design, in corporate
settings mostly to create comfortable silence. Increase the sound and the
space becomes more intimate, the person on the table next to you can not
immediately hear what you are saying. It seems that actual silence in public
and corporate spaces has not been sought after since the start of the 20th
century. Actual silence is not at the moment considered comfortable. One of
the visible symptoms of our desire to take the edge off the silence is to be
observed through the appearance of fountains in public space. The fountains
purpose being to give off neutral sound, like white noise without the negative
connotations. However as a sound engineer’s definition of noise is unwanted
sound that all depends on ones personal relation to the sound of dripping
water.

This means that there needs to be a consistent inoffensiveness to create
comfortable silence.

In corporate architecture the arrival of glass buildings were originally seen as
a symbol of transparency, especially loved by governmental buildings. Yet the
reflectiveness of this shiny surface once combined with strong light — known
as the treason of the glass — was only completely embraced at the invention of
one-way-mirror foil. And it was the corporate business-world that would come
to be known for their reflective glass skyscrapers. As the foil reacts to light, it
appears transparent to someone standing in the dark, while leaving the side
with the most light with an opaque surface. Using this foil as room dividers in
a room with a changing light, what is hidden or visible will vary throughout the
day. So will the need for comfortable silence.

Disclaimer :

Similar to the last 100 years of western office organisation,
this fountain only has two modes:

on or off

If it is on it also offers two options
cold water and hot water

This fountain has been tampered with and has not in any way been approved
by a proffesional fountain cleaner. | do urge you to consider this before you
take the decision to drink from the fountain.

Should you chose to drink from the fountain, then | urge you to write your name
on your cup, in the designated area, for a customised experience of my care
for you.

| do want you to be comfortable.

http://observatory.constantvzw.org/documents/mia/mia6.gif http://observatory.constantvzw.org/documents/mia
http://observatory.constantvzw.org/documents/mia/IMG_-5695.JPG http://observatory.constantvzw.org/docume

See also:

Source: Mia Melvaer

Method: Create "nannyware”: Software that observes and addresses the
user

Remember:

What: Nannyware is software meant to protect users while limiting their space
of activity. It is software that passive-aggressively suggests or enforces some
kind of discipline. In other words, create a form of parental control extended to
adults by means of user experience / user interfaces.

Nannyware is a form of Content-control software: software designed to restrict
or control the content a reader is authorised to access, especially when utilised
to restrict material delivered over the Internet via the Web, e-mail, or other
means. Content-control software determines what content will be available or
be blocked.

How: [...Restrictions] can be applied at various levels: a government can at-
tempt to apply them nationwide (see Internet censorship), or they can, for
example, be applied by an ISP to its clients, by an employer to its person-
nel, by a school to its students, by a library to its visitors, by a parent to a
child’s computer, or by an individual user to his or her own computer. (source:
https://en.wikipedia.org/wiki/Content-controlso ftware)

When:

Urgency: As with all new lifestyle technologies that come along, in the begin-
ning there is also some chaos until their impact can be assessed and rules put
in place to bring order and respect to their implementation and use in society.
When the automobile first came into being there was much confusion regard-
ing who had the right of way, the horse or the car. There were no paved roads,
speed limits, stop signs, or any other traffic rules. Many lives were lost and
much property was destroyed as a result. Over time, government and society
developed written and unwritten rules as to the proper use of the car. (source:
https://www.netnanny.com/products/netnanny/protecting-your-family/)

Note:

Warning: Disadvantages of explicit proxy deployment include a user’s ability
to alter an individual client configuration and bypass the proxy. To counter this,
you can configure the firewall to allow client traffic to proceed only through the
proxy. Note that this type of firewall blocking may result in some applications not

working properly. (from: https://web.archive.org/web/20120418150020/http://www.websense.c

Example: The main problem here is that the settings that are required are
different from person to person. For example, | use workrave with a 25 sec-
ond micropause every two and a half minute, and a 10 minute restbreak ev-
ery 20 minutes. | need these frequent breaks, because I'm recovering from
RSI. And as | recover, | change the settings to fewer breaks. If you have

never had any problem at all (using the computer, that is), then you may
want much fewer breaks, say 10 seconds micropause every 10 minutes, and
a 5 minute restbreak every hour. It is very hard to give proper guidelines
here. My best advice is to play around and see what works for you. Which
settings “feel right”. Basically, that's how Workrave’s defaults evolve. (from
http://www.workrave.org/documentation/fag/)

http://www.advicegoddess.com/archives/2008/05/03/nannyware

Figure 0.3: Content-control software

Figure 0.4: A “nudge” from your music player

I[Emphasis on the body] (http://classicallytrained.net/wp-content/uploads/2014/10/take-
a-break.jpg)

I[Slack is trying to be my friend but it's more like a slightly insensitive and
slightly bossy acquaintance.] (https://pbs.twimg.com/media/CuZLgV4XgAAYexX.jpg)

Facebook is working on an app to stop you from drunk-posting “Yann LeCun,
who overseas the lab, told Wired magazine that the program would be like
someone asking you, ‘Uh, this is being posted publicly. Are you sure you want
your boss and your mother to see this?’”

https://i.kinja-img.com/gawker-media/image/upload/s—"of@Pol

Figure 0.5: This Terminal Dashboard Reminds You to Take a Break When
You're Lost Deep Inside the Command Line

See also:

http://waterlog.gd/images/homescreen.png

Figure 0.6:

Figure 0.7:

Source: Silvio Lorusso

Method: Useless scroll against productivity
Remember:

What:

How:

When:

Urgency:

Note:

Warning:

Example:

See also:

Source:

Method: Investigating how humans and machines negotiate the experience
of time

Remember:

What: http://observatory.constantvzw.org/images/Screenshot s rom2017—06—
10172547.pngHow:pythonscriptWhen:

Urgency:
Note:
Warning:

Example:

<IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional/EN” “http://www.w3.0rg/TR/xhtmI1/DTD/xht
transitional.dtd”> <html xmIns="http://www.w3.0rg/1999/xhtml|”> <head> <meta
http-equiv="Content-Type” content="text/html; charset=utf-8” /> <meta http-
equiv="Content-Style-Type” content="text/css” /> <meta name="generator”
content="pandoc” /> <title></title>> <style type="text/css”>code{white-space:
pre;}</style> <link rel="stylesheet” href="/home/pi/include/markdownpad.css”
type="text/css” /> </head> <body> <h1 id="ends-of-time”>ends of time</h1>
<p>https://en.wikipedia.org/wiki/Year_2038_problem</p> <p>Exact moment

of the epoch: 03:14:07 UTC on 19 January 2038</p> <h2 id="commands”>commands</h2>
<p>local UNIX time of this machine date +%s</p> <p>UNIX time + 1 echo
$((<code>date +%s</code> +1))</p> <h2 id=“goodbye-unix-time”>goodbye

unix time</h2> <pre><code>while : do sleep 1 figlet $((2147483647 - 1))
done</code></pre> <h1 id="sundial-time-protocol-group-tweaks”>Sundial

Time Protocol Group tweaks</h1> <pre><code>printf ‘Current Time in

Millennium Unix Time:’ printf $((2147483647 - 1)) echo sleep 2 echo $((1

+ 2)) > ends-of-times/idletime idletime=1 echo figlet “Thank you for having

donated 2 seconds to our ${idletime} seconds of collective SSH pause” echo
echo</code></pre> </body> </html>

See also:

Source:

Languaging

Method: Quine What: A program whose function consists of displaying its
own code. Also known as "self-replicating program” Why: Quines show the
tension between “software as language” and "software as operation”. How:

By running a quine you will get your code back. You may do a step forward
and wonder about functionality and aesthetics, uselessness and performativity,
data and code.

Example:

Example of a quine (Python). When executed it outputs the same text as the
source:
[1s="s=print(s

Example of a oneline unibash/etherpad quine, created during relearn 2017:
ipre class="quaverbatim”; wget -qO- http://192.168.73.188:9001/p/quine/export/txt
— curl -F "file=@-;type=text/plain” http://192.168.73.188:9001/p/quine/import
ipre¢,

Warning:

The encounter with quines may deeply affect you. You may want to write one
and get lost in trying to make an ever shorter and more elegant one. You may
also take quines as point of departure or limit-ideas for exploring software
dualisms.

“A quine is without why. It prints because it prints. It pays no attention to itself,
nor does it asks whether anyone sees it.” “Aquine is aquine is aquine.” Aquine
is not a quine This is not aquine

Remember: Although seemingly absolutely useless, quines can be used as
exploits.

Exploring boundaries/tensions

databases treat their content as data (database punctualization) some exploits
manage to include operations in a database

See also: http://pad.constantvzw.org/p/observatory.guide.monopsychism Source:

Part of Aquine, a discussion of and research into dualism in software http://observatory.constan

Method: Glossaries as an exercise
Remember:

What:

How:

When:

Urgency:

Note:

Warning:

Example:

See also:

Source:

Method: Adding qualifiers (secure, bad, bourgeois, queer...)
Remember:

What: Bringing a moral, ethical, or otherwise evaluative/adjectival/validating
lens: "This morning, Jan had difficulties to answer the question "what is soft-
ware”, but he said that he could answer the question "what is good software”.
What is good software?

How: The more adjectives, the easier the answering? When:

Urgency:

n o no»

Note: A qualifier like "good”, "bad”, "spy”, "queer”, “proletarian”, "bourgeisoie”
can help narrow down definitions.” Warning:

Example:
See also:

Source: http://observatory.constantvzw.org/etherdump/multiple-software-axes.html

20

21

Method: Searching "software” through software What: A quick way to sense

the ambiguity of the term ’software’, is to go through the manual files on your
hard drive and observe in which cases is the term used. How: command-line

oneliner Why: : Software is a polymorphic term that take different meanings

and comes with different assumptions for the different agents involved in its
production, usage and all other forms of encounter and subjection. From the
situated point of view of the software present on your machine, when and why
does software call itself as such?

Example:

so software exists only outside your computer? only in general terms? check-
ing for the word software in all man pages:

grep -nr software /usr/local/man
ITrn

software appears only in terms of license:

This program is free software
This software is copyright (c)

we don’t run software..we still run programs
nevertheless software is everywhere

Source: [Day1], etherpad snippet, line 574-589 http://observatory.constantvzw.org/etherdump

See also: http://pad.constantvzw.org/p/observatory.guide.samequestion

Method: Persist in calling everyone a Software Curious Person
Remember:

What: Persistance in naming is a method for changing a person’s relationship
to software by (sometimes forcibly) call everyone a Software Curious Person.
How: Insisting on curiosity as a relation, rather than for example fear’ or 'ad-

miration’ might help cut down the barriers between different types of expertise
and allows multiple stakeholders feel entitled to ask questions, to engage, to
investigate and to observe. When:

Urgency: Software is too important to not be curious about. Observations
could benefit from recognising different forms of knowledge. It seems impor-
tant to engage with software through multiple interests, not only by means of
technical expertise. Note:

Warning:

Example:

This method was used to address each of the visitors at the Technogalactic
Walk-in Clinic.

See also:

Source:

22

23

Healing

Method: Setup a Relational software observatory consultancy (RSOC)
Remember:

e Collectivise research around hacking to save time.

e Self-articulate software needs as your own Operating (system) perspec-
tive.

e Change the lens by looking to software through a time perspective.

What: By paying a visit to our ethnomethodology interview practice youll learn
to observe software from different angles / perspectives. Our practionners pas-
sion is to make the "what is the relation to software” discussion into a service.
How: Reading the signs. Considering the everchanging nature of software de-

velopment and use and its vast impact on globalized societies, it is necessary
to recognize some of the issues of how software is (often) either passively-
perceived or actively-observed, without an articulation of the relations. We offer
a method to read the signs of the relational aspect of software observance. It’s
a crucial aspect of our guide. It will give you another view on software that will
shape your ability to survive any kind of software disaster.

Strategy: Case study
Tool: Qualitative interview

Reading the signs. From: John “Lofty” Wiseman, SAS Survival Handbook: The
Ultimate Guide to Surviving Anywhere 3

When:
Urgency:
Note:
Warning:

Example:

What follows is an example of a possible diagnostic questionnaire.

3 http:/gallery.constantvzw.org/index.php/Techno-Galactic-Software-Observatory/IMAG1319

Sample Questionnaire

What to expect You will obtain a cartography of software users profiles. It will
help you to shape your own relation to software. You will be able to construct
your own taxonomy and classifcation of software users that is needed in order
to find a means of rescue in case of a software catastrophy.

e SKILLS

e What kind of user would you say that you are?

e What is your most frequently used type of software?

e How often do you install/experiment/learn new software?

e History

e What is your first recollection of software use?

e How often do / when did you last purchase software or pay for a software
service?

e Ethics

e What is the software feature you care about the most?

e Do you use any free software?

— if yes than
— do you remember your first attempt at using this software service?
Do you still use it? If not why?

e Do you pay for media distribution/streaming services?

e Do you remember your first attempt at using free software and how did
that make you feel?

e Have you used any of these software services : facebook, dating app
(grindr, tinder, etc.), twitter, instagram or equivalent.

e Can you talk about your favorite apps or webtools that you use regularly?

e What is most popular software your friends use?

e SKILL

e Would you say that you are a specilised user?

e Have you ever used the command line?

e Do you know about scripting?

e Have you ever edited an HTML page? A CSS file? A PHP file? A config-
uration file?

e Can you talk about your most technical encounter with your computer /
telephone?

¢ ECONOMY

e How do you pay for your software use?

— Please elaborate (for example, do you buy the software? / con-
tribute in kind / deliver services or support)

— What is the last software that you paid for using?

— What online services are you currently paying for?

24

— Is someone paying for your use of service?

a Parennal

25

Sample questionnaire results

Possible/anticipated user profiles

26

27

... meAsHardwareOwnerSoftwareUSER:

“l did not own a computer personally until very very late as | did not enjoy
gaming as a kid or had interest in spending much time behind PC beyond
work (and work computer). My first was hence | think in 2005 and it was a SGI
workstation that was the computer of the year 2000 (cost 10.000USD) and |
got it for around 300USD. Proprietary drivers for unified graphics+RAM were
never released, so it remained a software dead-end in gorgeous blue curved
chassis http://www.sgidepot.co.uk/sgidepot/pics/vwdocs.jpg”

...meAsSoftwareCONSUMER:

“| payed/purchased software only twice in my life (totalling less then 25eur),
as | could access most commercial software as widely pirated in Balkans and
later had more passion for FLOSS anyway, this made me relate to software as
material to exchange and work it, rather than commodity goods | could or not
afford.”

28

29

... meAsSoftwareINVESTOR:

“l did it as both of those apps were niche products in early beta (one was
Jeeper Elvis, real-time-non-linear-video-editor for BeOS) that failed to reach
market, but I think | would likely do it again and only in that mode (supporting
the bleeding edge and off-stream work), but maybe with more than 25eur.”

... meAsSoftwareUserOfOS:

“I would spend most of 80s ignoring computers, 90ties figuring out software
from high-end to low-end, starting with OSF/DecAlpha and SunOS, than IRIX
and MacOS, finally Win 95/98 SE, that permanently pushed me into niches (of
montly LINUX distro install fests, or even QNX/Solaris experiments and finally
BeOS use).”

30

31

... meAsSoftware WEBSURFER:

“| got used to websurfing in more than 15 windows on UNIX systems and never
got used to less than that ever since, furthermore with addition of more browser
options this number only multiplied (always wondered if my first system was
Windows 3.11 - would | be a more focused person and how would that form
my relations to browser windows>tabs).”

... meAsSoftwareUserOfPropertarySoftware:

"I signed one NDA contract in person on the paper and with ink on a rainy day
while stopping of at trainstaion in north Germany for the software that was later
to be pulled out of market due to problematic licencing agreement (intuitivly
| knew it was wrong) - it had too much unprofessional pixeleted edges in its
graphics.

32

33

... meAsSoftwareUserOfDatingWebsites:

“I got one feature request implemented by a prominent dating website (to

search profiles by language they speak), however | was never publicly acknowl-
edged (though | tried to make use of it few times), that made our relations feel
a bit exploitative and underappreciated.”

... meAsSoftwareUserTryingToGoPRO:

“my only two attempts to get into the software company failed as they insisted
on full time commitments. Later | found out ones were intimidated in interview
and other gave it to a person that negotiated to work part time with friend! My

relation to professionalism is likely equally complex and pervert as one to the
software.”

34

35

Case study : W. W.

...ww.AsExperiencedAdventerousUSER - experiments with software every
two days as she uses FLOSS and Gnu/Linux, cares the most for maliabity of
the software - as a result she has big expectations of flexibility even in software
category which is quite conventional and stability focused like file-hosting.

...ww.AsAnlInevstorIinSoftware - paid compiled version of FLOSS audio soft-
ware 5 years ago as she is supportive of economy and work around production,
maintainance and support, but she also used closed hardware/software where
she had to agree on licences she finds unfair, but then she was hacking it in
order to use it as an expert - when she had time.

...ww.AsCommunicationSoftwareUSER - she is not using commercial social
networks, so she is very concious of information transfers and time relations,
but has no strong media/format/design focus.

Q: What is your first recollection of software use?
A: ms dos in 1990 at school _iwas 15 or 16. oh no 12. Basic in 1986.

Q: What are the emotions related to this use?
A: fun. i'm good at this. empowering

Q: How often do / when did you last purchase software or pay for a software
service?

A: | paid for ardour five years ago. | paid the developper directly. For the
compiled version. | paid for the service. | pay for my website and email service
at domaine public.

Q: What kind of user would you say you are?
A: An experienced user drawing out the line. | don’t behave.

Q: Is there a link between this and your issue?
A: Even if it's been F/LOSS there is a lot of decision power in my package.

Q: What is your most frequently used type of software?
A: Web browser. email. firefox & thunderbird

Q: How often do you install/experiment/learn new software?
A: Every two days. | reinstall all the time. my old Its system died. stop being
supported last april. It was linux mint something.

Q: Do you know about scripting?
A: | do automating scripts for any operation i have to doi several times like
format conversion.

Q: Can you talk about your most technical encounter with your computer /
telephone?
A: I've tried to root it. but i didn’t succeed.

Q: How much time do you wish to spend on such activities like hacking, rooting
your device?
A: hours. you should take your time

Q: Did you ever sign licence agreement you were not agree with? How does
that affect you?
A: This is the first thing your when you have a phone. it's obey or die.

Q: What is the software feature you care for the most?
A: malleability. different ways to approach a problem, a challenge, an issue.

Q: Do you use any free software?
A: yes. there maybe are some proprietary drivers.

Q: Do you remember your first attempt at using free software and how did that
make you feel?
A: Yes i installed my dual boot in ... 10 years ago. scared and powerful.

Q: Do you use one of this software service: facebook, dating app (grindr of
sort), twitter, instagram or equivalent?
A: Google, gmail that’s it

Q: Can you talk about your favorite apps or webtools that you use regularly?
A: Music player. vanilla music and f-droid. browser. | pay attention to clearing
my history, no cookies. | also have iceweasel. Hitps by default. Even though i
have nothing to hide.

Q: What stories around contracts and administration in relation to your software
internet or computer?

A: Nothing comes to my mind. i'm not allowed to do, to install on phone. When
it's an old phone, there is nothing left that is working you have to do it.

Q: How does software help you shape your relations with other people?

A: It's a hard question. if it's communication software of course it’s it's nature to
be related to other people.there is an expectency of immediate reply, of infor-
mation transfer. . . It’s troubling your relation with people in certain situations.

Q: From which countries does your softwares live / is coming from? How do
you feel about that?

A: i think i chose the netherlands as a miror. you are hoping to reflect well in
this miror.

36

37

Q: Have you ever read a terms of software service; one that is not targeting
the American market?
A: i have read them. no.

See also:

Source:

http://observatory.constantvzw.org/etherdump/SCP.see.html http://observatory.constantvzw.or
http://observatory.constantvzw.org/etherdump/SCP.wendy.html This method
was developed by The RSOC Group.

Method: Agile Sun Salutation

Remember:

Agile software development describes a set of values and principles for
software development under which requirements and solutions evolve
through the collaborative effort of self-organizing cross-functional teams.
It advocates adaptive planning, evolutionary development, early delivery,
and continuous improvement, and it encourages rapid and flexible
response to change. These principles support the definition and
continuing evolution of many software development methods. Source:
https://en.wikipedia.org/wiki/Agile_software_development

What: You will be observing yourself How: Scrum is a framework for managing

software development. It is designed for teams of three to nine developers who
break their work into actions that can be completed within fixed duration cycles
(called "sprints”), track progress and re-plan in daily 15-minute stand-up meet-
ings, and collaborate to deliver workable software every sprint. Approaches to
coordinating the work of multiple scrum teams in larger organizations include
Large-Scale Scrum, Scaled Agile Framework (SAFe) and Scrum of Scrums,
among others. (from: https:/en.wikipedia.org/wiki/Scrum so ftware evelopment))When: An

Warning:

The agile movement is in some ways a bit like a teenager: very self-conscious,
checking constantly its appearance in a mirror, accepting few criticisms, only
interested in being with its peers, rejecting en bloc all wisdom from the past,
just because it is from the past, adopting fads and new jargon, at times cocky
and arrogant. But | have no doubts that it will mature further, become more

open to the outside world, more reflective, and also therefore more effective.

—?Kruchten, Philippe (2011-06-20). “Agile’s Teenage Crisis?”. InfoQ. (from
https://en.wikipedia.org/wiki/Agile_software_development#Criticism)
Example:

Hello and welcome to the presentation of the agile yoga methodology. | am
Allegra, and today I'm going to be your personal guide to YOGA, an acronym
for why organize? Go agile! I'll be part of your team today and we’ll do a few
exercises together as an introduction to a new path into your professional and
personal life towards creativity, focus and health.

A few months ago, | was stressed, overwhelmed with my work, feeling alone,
inadequate, but since | started practicing agile yoga, | feel more productive. |
have many clients as an agile yoga coach, and I've seen new creative business
opportunities coming to me as a software developer.

For this first experience with the agile yoga method and before we do physical
exercises together, | would like to invite you to close your eyes. Make yourself
comfortable, lying on the floor, or sitting with your back on the wall. Close your
eyes, relax. Get comfortable. Feel the weight of your body on the floor or on
the wall. Relax.

Leave your troubles at the door. Right now, you are not procrastinating, you
are having a meeting at the <SAY THE NAME OF YOUR LOCATION HERE >,
a professional building dedicated to business, you are meeting yourself, you
are your own business partner, you are one. You are building your future.

You are in a room standing with your team, a group of lean programmers.
You are watching a white board together. You are starting your day, a very
productive day as you are preparing to run a sprint together. Now you turn
towards each other, making a scrum with your team, you breathe together,
slowly, inhaling and exhaling together, slowly, feeling the air in and out of your
body. Now you all turn towards the sun to prepare to do your ASSanas, the
agile Sun Salutations or ASS with the team dedicated ASS Master. She’s
guiding you. You start with Namaskar, the Salute. your palms joined together,
in prayer pose. you all reflect on the first principle of the agile manifesto. your
highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

38

39

Next pose, is Ardha Chandrasana or (Half Moon Pose). With a deep inhalation,
you raise both arms above your head and tilt slightly backward arching your
back. you welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage. then
you all do Padangusthasana (Hand to Foot Pose). With a deep exhalation, you
bend forward and touch the mat, both palms in line with your feet, forehead
touching your knees. you deliver working software frequently.

Surya Darshan (Sun Sight Pose). With a deep inhalation, you take your right
leg away from your body, in a big backward step. Both your hands are firmly
planted on your mat, your left foot between your hands. you work daily through-
out the project, business people and developers together. now, you're flowing
into Purvottanasana (Inclined Plane) with a deep inhalation by taking your right
leg away from your body, in a big backward step. Both your hands are firmly
planted on your mat, your left foot between your hands. you build projects
around motivated individuals. you give them the environment and support they
need, and you trust them to get the job done.

You're in Adho Mukha Svanasana (Downward Facing Dog Pose). With a deep
exhalation, you shove your hips and butt up towards the ceiling, forming an
upward arch. Your arms are straight and aligned with your head. The most
efficient and effective method of conveying information to and within a devel-
opment team is face-to-face conversation.

Then, Sashtang Dandawat (Forehead, Chest, Knee to Floor Pose). With a
deep exhalation, you lower your body down till your forehead, chest, knees,
hands and feet are touching the mat, your butt tilted up. Working software is
the primary measure of progress.

Next is Bhujangasana (Cobra Pose). With a deep inhalation, you slowly snake
forward till your head is up, your back arched concave, as much as possible.
Agile processes promote sustainable development. You are all maintaining a
constant pace indefinitely, sponsors, developers, and users together.

Now back into Adho Mukha Svanasana (Downward Facing Dog Pose). Continuous

attention to technical excellence and good design enhances agility.

And then again to Surya Darshan (Sun Sight Pose). Simplicity—the art of maxi-
mizing the amount of work not done—is essential. Then to Padangusthasana
(Hand to Foot Pose). The best architectures, requirements, and designs emerge
from self-organizing teams.

You all do again Ardha Chandrasana (Half Moon Pose). At regular intervals,
you as the team reflect on how to become more effective, then tune and adjust
your behavior accordingly. you end our ASSanas session with a salute to honor
your agile yoga practices. you have just had a productive scrum meeting. now
i invite you to open your eyes, move your body around a bit, from the feet up
to the head and back again.

Stand up on your feet and let's do a scrum together if you're ok being touched
on the arms by someone else. if not, you can do it on your own. so put your
hands on the shoulder of the SCP around you. now we're joined together, let’s
look at the screen together as we inhale and exhale. syncing our body together
to the rythms of our own internal software, modulating our oxygen level intake
requirements to the oxygen availability of our service facilities.

Now, let’s do together a couple of exercise to protect and strengthen our wrists.
as programmers, as internauts, as entrepreneurs, they are a very crucial parts
of the body to protect. in order to be able to type, to swipe, to shake hands
vigourously, we need them in good health. So bring to hands towards each
other in a prayer pose, around a book, a brick. You can do it without but I'm
using my extreme programming book - embrace change - for that. So press
the palms together firmly, press the pad of your fingers together. do that while
breathing in and out twice.

Now let's expand our arms towards us, in the air, face and fingers facing down.
like we're typing. make your shoulders round. let’s breath while visualizing in
our heads the first agile mantra : Individuals and interactions over processes
and tools.

Now let’s bring back the arms next to the body and raise them again. And let’'s
move our hands towards the ceiling this time. Strenghtening our back. In our
head, the second mantra. Working software over comprehensive documenta-
tion. now let’s bring back the hands in the standing position. Then again the
first movement while visualizing the third mantra : Customer collaboration over
contract negotiation and then the second movement thinking about the fourth
and last mantra : Responding to change over following a plan and of course
we continue breathing. Now to finish this session, let’s do a sprint together in
the corridor !

45

4 http://observatory.constantvzw.org/guide/agileyoga/8-Poses-Yoga-Your-Desk.contours.png
5 http://observatory.constantvzw.org/guide/agileyoga/gayolab-office-chair-for-yoga.contours.png

40

41

See also:

Source: Developed by: Anne Laforet, performed by: Allegra

Method: Hand reading How: Visit the Future Blobservation Booth to have

your fortunes read and derive life insight from the wisdom of software. What:

put your hand in the reading booth and get your line read. Why: The hand

which holds your mouse everyday hides many secrets.

Example:

sample reading timeline:
15:00 a test user, all tests clear and systems are online a user who
15:35 another nice user

15:40 another nice user

15:47 happy user (laughing)

15:51 user complaining about her fortune, saying it’'s not true. Fou
15:59 another nice user: http://etherbox.local:9001/p/SCP.sedyst.

16
16
16

16

106
108
212
16:
119

14

a polite user

a friendly playful user (stephanie)

a very giggly user (wendy)

a playful user - found the reading process erotic - DEFRAGME
a curious user

16:27 a friendly user but oh no, we had a glitch and computer crash
16:40 a nice user, the printer jammed but it was sorted out quickly

16
16
16
16
16
16
17
17

142
150
152
:55
157
158
100
102

Example:

another nice user

nice user (joak)

yet another nice user (jogi)
happy user! (peter w)

more happy user (pierre h)
another happy user

super happy user (peggy)
more happy user

Software time is not the same as human time. Computers will run for AS
LONG AS THEY WILL BE ABLE TO, provided sufficient power is
available. You, as a human, don’t have the luxury of being always
connected to the power grid and this have to rely on your INTERNAL
BATTERY. Be aware of your power cycles and set yourself to
POWER-SAVING MODE whenever possible.”

Source:

Method: Bug reporting for sharing observations
Remember:

What: Etherpad had stopped working but it was unclear why. Where does
etherpad ’live’? How: Started by looking around the pi’s filesystem by reading
/var/log/syslog in /opt/etherpad and in a subdirectory named var/ there was
dirty.db, and dirty it was. When: Monday morning Urgency: Software (ether-

pad) not working and the Walk-in Clinic was about to start. Note: http://pad.constantvzw.org/p/observatory.inver

Warning:

Example:

from jogi@mur.at to [Observatory] When dirty.db get’s dirty

Dear all,

as promised yesterday, here my little report regarding the broken etherpad.
<md> ### When dirty.db get’s dirty

When | got to WTC on Monday morning the etherpad on etherbox.local was
disfunct. Later someone said that in fact etherpad had stopped working the
evening before, but it was unclear why. So | started looking around the pi's
filesystem to find out what was wrong. Took me a while to find the relevant
lines in /var/log/syslog but it became clear that there was a problem with
the database. Which database? Where does etherpad ‘live’? | found it in
/opt/etherpad and in a subdirectory named var/ there it was: dirty.db, and dirty
it was.

A first look at the file revealed no apparent problem. The last lines looked like
this:

42

—"key" :"sessionstorage :Ddy@gw7okwbkv5BzkR1DuSLCV IA5 jQ", "val” :="coo
":="path”:"/",” "expires” :null, "originalMaxAge” :null, "httpOnly"” :true,
—"key” :"sessionstorage:AUlcffgcTf q6BV9aIdAVES2YyXM7Gm1”, "val” :="coo
":="path”:"/",” "expires” :null, "originalMaxAge” :null, "httpOnly” :true,
—"key"” :"sessionstorage: "H5SdU1DvQ3XCuPaZEXQ51xBK6aAEJImM", "val” :="coo
":="path”:"/","” expires”:null, "originalMaxAge” :null, "httpOnly” :true,
cure”:false” "~

What | did not see at the time was that there were some (AFAIR something
around 150) binary zeroes at the end of the file. | used tail for the first look and
that tool silently ignored the zeroes at the end of the file. It was Martino who
suggested using different tools (xxd in that case) and that showed the cause
of the problem. The file looked something like this:

00013730: 6f6b 6965 223a 7b22 7061 7468 223a 222f okie”:-"path”:"/
00013740: 222c 225f 6578 7069 7265 7322 3a6e 756¢c ", " expires”:nul
00013750: 6c2c 226 7269 6769 6e61 6¢c4d 6178 4167 1, "originalMaxAg
00013760: 6522 3abe 756¢c 6c2c 2268 7474 704f 6e6c e”:null, "httpOnl
00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y":true, "secure”
00013780: 3a66 616c 7365 7d7d 7d0a 0000 0000 00BO :false” " ".......
00013790 : 0000 00O VOOV VOOO VOOB 0BV BOVO PO

So Anita, Martino and | stuck our heads together to come up with a solution.
Our first attempt to fix the problem went something like this:

dd if=dirty.db of=dirty.db.clean bs=1 count=793080162

which means: write the first 793080162 blocks of size 1 byte to a new file. After
half an hour or so | checked on the size of the new file and saw that some
10% of the copying had been done. No way this would get done in time for the
walk-in-clinic. Back to the drawing board.

Using a text editor was no real option btw since even vim has a hard time
with binary zeroes and the file was really big. But there was hexedit! Martino
installed it and copied dirty.db onto his computer. After some getting used to
the various commands to navigate in hexedit the unwanted zeroes were gone
in an instant. The end of the file looked like this now:

00013730: 6f6b 6965 223a 7b22 7061 7468 223a 222f okie”:-"path”:"/
00013740: 222c 225f 6578 7069 7265 7322 3abe 756¢c ", " ‘expires”:nul
00013750 6c2c 226f 7269 6769 6e61 6¢c4d 6178 4167 1, "originalMaxAg
00013760: 6522 3abe 756c 6¢c2c 2268 7474 704f 6e6c e”:null, "httpOnl
00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y”:true, "secure”
00013780: 3a66 616¢c 7365 7d7d 7d0@a :false”””

Martino asked about the trailing ’’ character and | checked a different copy of
the file. No ’ there, so that had to go too. My biggest mistake in a long time!
The '’ we were seeing in Martino’s copy of the file was in fact a ” (0a)! We did
not realize that, copied the file back to etherbox.local and waited for etherpad
to resume it's work. But no luck there, for obvious reasons.

We ended up making backups of dirty.db in various stages of deformation and
Martino started a brandnew pad so we could use pads for the walk- in-clinic.
The processing tool chain has been disabled btw. We did not want to mess up
any of the already generated .pdf, .html and .md files.

We still don’t know why exactly etherpad stopped working sometime Sunday
evening or how the zeroes got into the file dirty.db. Anita thought that she
caused the error when she adjusted time on etherbox.local, but the logfile does
not reflect that. The last clean entry in /var/log/syslog regarding nodejs/etherpad
is recorded with a timestamp of something along the line of ‘Jun 10 10:17".
Some minutes later, around ‘Jun 10 10:27’ the first error appears. These times-
tamps reflect the etherbox’s understanding of time btw, not ‘real time’.

It might be that the file just got too big for etherpad to handle it. The size of the
repaired dirty.db file was already 757MB. That could btw explain why etherpad
was working somewhat slugishly after some days. There is still a chance that
the time adjustment had an unwanted side effect, but so far there is no obvious
reason for what had happened. </md> — J.Hofmller

http://thesix.mur.at/

See also:

Source: jogi, http://pad.constantvzw.org/p/observatory.inventory.jogi

Method: Interface Dtournement

44

45

Remember:
What:

How:
When:
Urgency:
Note:
Warning:
Example:
See also:

Source:

Embodiment / body techniques

Method: Comportment of software (occupational hazards)
Remember: Find a quote from Addicted by Design

What: Observing ways software produces bodies How:

When:
Urgency:
Note:

Warning: Software may harm your physical and emotional health both by
design and by accident

Example:
See also: Agile Sun Salutation, Natashcha Schull’'s Addicted by Design

Source: Carlin

46

47

Flow-regulation, logistics, seamlessness

Method: Continuous integration

What: Continuous integration is a sophisticated form of responsibility manage-
ment: it is the fascia of services. Continous integration picks up after all other
services and identifies what needs to happen so that they can work in concert.
Continuous integration is a way of observing the evolution of (micro)services
through cybernetic (micro)management. How: Continuous integration keeps

track of changes to all services and allows everyone to observe if they still can
work together after all the moving parts are fitted together. When: Continuous

integration comes to prominence in a world of distributed systems where there
are many parts being organized simultaneously. Continuous integration is a
form of observation that helps (micro)services maintain a false sense of inde-
pendence and decentralization while constantly subjecting them to centralized
feedback. Urgency: Continuous integration reconfigures divisions of labor in

the shadows of automation. How can we surface and question its doings and
undoings? Warning: When each service does one thing well, the service mak-

ers tend to assume everybody else is doing the things they do not want to
do.

Example:

At TGSO continuous integration was introduced as a service that responds
to integration hell when putting together a number of TGSO services for a
walk-in software clinic. Due to demand, the continuous integration service was
extended to do “service discovery” and “load balancing” once the walk-in clinic
was in operation.

Continuous integration worked by visiting the different services of the walk-in
clinic to check for updates, test the functionality and think through implications
of integration with other services. If the pieces didn't fit, continuous integration
delivered error messages and solution options.

When we noticed that software curious persons visiting the walk-in clinic
may have troubles finding the different services, and that some services may
be overloaded with software curious persons, continuous integration was ex-
tended. We automated service registration using colored tape and provided a
lookup registry for software curious persons.

Load balancing meant that software curious persons were forwarded to ser-
vices that had capacity. If all other services were full, the load balancer de-
faulted to sending the software curious person to the Agile Sun Salutation ©
service.

Warning: At TGSO the bundling of different functionalities into the continuous
integration service broke the "do one thing well” principle, but saved the day
(we register this as technical debt for the next iteration of the walk-in clinic).

See also:

Source: While continous integration held the day together, we are sorry to
report that her work is only documented in images and in the choreography of
the day but not in any of our writings.

Remember: Continous integration may be the string that holds your current
software galaxy together.

“More technically, | am interested in how things bounce around in computer
systems. | am not sure if these two things are relted, but | hope continuous
integration will help me.”

Method: make make do
Remember:

What: Makefile as a method for quick/collective assemblages + observing
amalgamates/pipelines How:

When:
Urgency:

Note: Note: http://observatory.constantvzw.org/etherdump/makefile.raw.html

etherpad->md->pdf->anything pipeline. makefile as a method for quick/collective

assemblages + observing amalgamates/pipelines CHRISTOPH
Warning:
Example:
See also:

Source:

6 http://pad.constantvzw.org/p/observatory.guide.agile.yoga

48

49

Beingontheside/inthemiddle/behind

Method: Something in the Middle Maybe (SitMM)
Remember:

What: The network traffic gets observed. There are different sniffing software
out there which differ in granularity and how far the user can taylor the different

functionality. SitMM builds on one of these tools called [scapy](http://www.secdev.org/projects/s

How: SitMM takes a closer look at the network traffic coming from/going to a

software curious person’s device. The software curious person using SitMM
may ask to filter the traffic based on application or device of interest. When:

The software curious person gets to observe their own traffic. Ideally, observ-
ing ones own network traffic should be available to anyone, but using such
software can be deemed illegal under different jurisdictions.

For example, in the US wiretap law limit packet-sniffing to parties owning the
network that is being sniffed or the availability of consent from one of the
communicating parties. Section 18 U.S. Code 2511 (2) (a) (i) says: 1 See
here for a paper 7 on the topic. Google went on a big legal spree to defend their
right to capture unencrypted wireless traffic with google street view cars. The
courts were concerned about wiretapping and infringements on the privacy of
users, and not with the leveraging of private and public WiFi infrastructure for
the gain of a for profit company. The case raises hard questions about the state,
ownership claims and material reality of WiFi signals. So, while WiFi sniffing is
common and the tools like SitMM are widely available, it is not always possible
for software curious persons to use them legally or to neatly filter out “their
traffic” from that of “others”.

e When: SitMM can be used any time a software curious person feels the
weight of the (invisible) networks.

e Why: SitMM is intended to be a tool that gives artists, designers and
educators an easy to use custom WiFi router to work with networks
and explore the aspects of our daily communications that are exposed
when we use WiFi. The goal is to use the output to encourage open
discussions about how we use our devices online.

7 http://spot.colorado.edu/ sicker/publications/issues.pdf

Urgency:
Note:
Warning:

Example:

Snippets of a Something In The Middle, Maybe - Report

UDP 192.168.42.32:53649 -; 8.8.8.8:53

TCP 192.168.42.32:49250 -; 17.253.53.208:80

TCP 192.168.42.32:49250 -; 17.253.53.208:80

TCP/HTTP 17.253.53.208:80 GET http://captive.apple.com/mDQArB9orEii/XmqléoYqtUtn;
TCP 192.168.42.32:49250 -; 17.253.53.208:80

TCP 192.168.42.32:49250 -; 17.253.53.208:80

TCP 192.168.42.32:49250 -; 17.253.53.208:80

UDP 192.168.42.32:63872 -; 8.8.8.8:53

UDP 192.168.42.32:61346 -; 8.8.8.8:53

TCP 192.168.42.32:49260 -¢ 17.134.127.97:443
TCP 192.168.42.32:49260 -¢ 17.134.127.97:443
TCP 192.168.42.32:49260 -¢ 17.134.127.97:443
TCP 192.168.42.32:49260 -; 17.134.127.97:443
TCP 192.168.42.32:49260 -¢ 17.134.127.97:443
TCP 192.168.42.32:49260 -¢ 17.134.127.97:443
TCP 192.168.42.32:49260 -; 17.134.127.97:443

B g
Destination Address: 17.253.53.208

Destination Name: nlams2-vip-bx-008.aaplimg.com

Port: Connection Count
80: 6

B g
Destination Address: 17.134.127.79

Destination Name: unknown

Port: Connection Count

50

51

443 : 2

HUHHHHHH R HH AR HHHHR R R AR RS R
Destination Address: 17.248.145.76

Destination Name: unknown

Port: Connection Count
443 : 16
See also:

Source: *Sitm* emerges from the collective practice of the Alternative Learning
Tank and is heavily inspired by projects such as [Dowse](http://dowse.equipment/),
[alt.exit](http:/alternativelearningtank.net/) and the [NetAidKit](https://netaidkit.net/).
http://observatory.constantvzw.org/SomethingInTheMiddle/

Method: What is it like to be AN ELEVATOR?
Remember:

What: Understanding software systems by becoming them (TODO: extend
this text how to observe software in the world around you. How to observe
an everyday software experience and translate this into a flowchart) How:

Creating a flowchart to incarnate a software system you use everyday When:
Urgency:
Note:

Warning: Uninformed members of the public may panic when confronted with
a software performance in a closed space.

Example: What is it like to be an elevator?

For example:

what

an
elevator?

“from 25th floor to 1st floor”
light on button light of 25th floor
check current floor

if current floor is 25th floor

no

if current flooris ...

go one floor up

... smaller than 25th floor

go one floor down

... bigger than 25th floor

stop elevator

turn button light off of 25th floor
turn door light on

open door of elevator

play sound opening sequence
yes

start

user pressed button of 25th floor
close door of elevator

if door is closed

52

53

user pressed 1st floor button
start timer for door closing

if timer is running more than three seconds
yes

yes

light on button

go one floor down

no

if current floor is 1st floor
update floor indicator

check current floor

stop elevator

no

yes

light off button

turn door light on

open door of elevator

play sound opening sequence
end

update floor indicator
See also:

Source: Developed by Joseph Knierzinger, Michaela Lakova + Other Members
of the SSOGY Group

Method: Side Channel Analysis
Remember:
What:

How:

When:

Urgency: Side Channel attacks are possible by disregarding the abstraction
of software into pure logic: the physical effects of the running of the software
become backdoors to observe its functioning, both threatening the control of
processes and the re-affirming the materiality of software. Note:

Warning: ** engineers are good guys! **
Example:

https://www.tek.com/sites/default/files/media/image/119-4146-00%20Near%20Field%20Probe%20Set.png.jp¢
See also:

Source:

54

55

Collections / collecting

Method: Compiling a bestiary of software logos
Remember:

What: Since the early days of GNU-linux and cemented through the ubiquitous
O'Reilly publications, the visual culture of software relies heavily on animal
representations. But what kinds of animals, and to what effect? How:

Compile a collection of logos and note the metaphors for observation: - stetho-
scope - magnifying glass - long neck (giraffe)

When:

Urgency:

Note:

Warning:

Example:

[check Testing the testbed pads for examples] [something on bestiaries]
See also:

Source:

Method: Encounter several collections of historical hardware back-to-back
Remember:
What:

How:

This can be done by identifying one or more computer museums and visit them
with little time in-between. Visiting a friend with a large basement and lots of
left-over computer equipment can help. Seeing and possibly touching hard-
ware from different contexts (state-administration, business, research, ...), pe-
riods of time, cultural contexts (California, Germany, French-speaking Belgium)
and price ranges allows you to sense the interactions between hardware and
software development.

When:
Urgency:

Note: It's a perfect way to hear people speak about the objects and their
contexts, how they worked or not and how objects are linked one with another.
It's also showing economic and cultural aspects of softwares.

Warning: **DO NOT FOLD, SPINDLE OR MUTILATE**

At one point during the demonstration of a Bull computer, the guide revealed
the system’s “software” — a suitcase sized module with dozens of patch cords.
She made the comment that the term “spaghetti code” (a derogatory expres-
sion about early code usign many “GOTO” statments) had its origin in this
physical arrangement of code as patchings.

Preserving old hardware in order to observe physical manifestation of software.
See software here : we did experienced the incredible possibility of actually
touching software.

Playing with the binary. Bull cards. Happy operator! Punch card plays. “The
highlight of the collection is to revive a real punch card workshop of the 1960s.”

Collection de la Maison des critures d’Informatique & Bible, Maredsous

The particularity of the collection lies in the fact that it's the conservation of
multiple stages of life of a software since its initial computerization until today.
The idea of introducing informatics into the work of working with/on the Bible
(versions in Hebrew, Greek, Latin, and French) dates back to 1971, via punch
card recordings and their memorization on magnetic tape. Then came the step
of analyzing texts using computers.

See also: http://pad.constantvzw.org/p/observatory.guide.jean.heuns

Source: http://www.histoireinform.com/Histoire/+Infos/jmclcadr.htm

Method: Testing the testbed: testing software with observatory ambitions
(SWOA) Warning: this method may make more sense if you first take a look at

the [Something in the Middle Maybe (SitMM)](http://pad.constantvzw.org/p/observatory.guide.sitmm)
which is an instance of a SWOA How: The interwebs hosts many projects that

aim to produce software for observing software, (from now on Software With
Observatory Ambitions (SWOA)). A comparative methodology can be pro-
duced by testing different SWOA to observe software of interest. Example:

56

57

use different sniffing software to observe wireless networks, e.g., wireshark
vs tcpdump vs SitMM. Comparing SWOA reveals what is seen as worthy of
observation (e.g., what protocols, what space, which devices), the granularity
of the observation (e.g., how is the observation captured, in what detail), the
logo and conceptual framework of choice etc. This type of observation may
be turned into a service (See also: Something in the Middle Maybe (SitMM)).
When: Ideally, SWOA can be used everywhere and in every situation. In reality,

institutions, laws and administrators like to limit the use of SWOA on infras-
tructures to people who are also administering these networks. Hence, we are
presented with the situation that the use of SWOA is condoned when it is down
by researchers and pen testers (e.g., they were hired) and shunned when done
by others (often subject to name calling as hackers or attackers). What: Deep

philosophical moment: most software has a recursive observatory ambition
(it wants to be observed in its execution, output etc.). Debuggers, logs, dash-
boards are all instances of software with observatory ambitions and can not
be separated from software itself. Continuous integration is the act of folding
the whole software development process into one big feedback loop. So, what
separates SWOA from software itself? Is it the intention of observing software
with a critical, agonistic or adversarial perspective vs one focused on productiv-
ity and efficiency that distinguishes SWOA from software? What makes SWOA
a critical practice over other forms of sotware observation. If our methodology
is testing SWOA, then is it a meta critique of critique? Urgency: If observation

is a form of critical engagement in that it surfaces the workings of software that
are invisible to many, it follows that people would develop software to observe
(SWOASs). Testing SWOAs puts this form of critical observation to test with the
desire to understand how what is made transparent through each SWOA also
makes things invisible and reconfigures power. Note: Good SWOA software

usually uses an animal as a logo.:D

Warning: Many of the SWOA projects we looked at are promises more than
running software/available code. Much of it is likely to turn into obsolete grad-
ware, making testing difficult. Remember:

Source: By/history/source/origin/process: the “original testbed” was proposed
by researchers/collaborators at Princeton University. Testing this testbed at a
local Constant workshop led to the meta-project on testing software meant for
testing software.

See also: making a bestiary of visual cultures/logos around it See also: http://pad.constantvzw.org/p/observatc

See also: http://pad.constantvzw.org/p/observatory.guide.sitmm

Method: Prepare a reader to think theory with software
Remember:

What: Compile a collection of texts about software. How: Choose texts from

different realms. Software observations are mostly done in the realm of the
technological and the pragmatic. Also the ecology of texts around software
includes first and foremost manuals, technical documentation and academic
papers by software engineers and these all ’live’ in different realms. More
recently, the field of software studies opened up additional perspectives fuelled
by cultural studies and sometimes filosophy. By compiling a reader ... ways of
speaking/writing about. Proximity. When:

Urgency:
Note:
Warning:

Example:

Pull some quotes from the reader, for example from the chapter: Observation
and its consequences

Lilly Irani, Hackathons and the Making of Entrepreneurial Citizenship, 2015
http://sci-hub.bz/10.1177/0162243915578486

Kara Pernice (Nielsen Norman Group), Talking with Participants During a
Usability Test, January 26, 2014, https://www.nngroup.com/articles/talking-to-
users/

Matthew G. Kirschenbaum, Extreme Inscription: Towards a Grammatology of
the Hard Drive. 2004 http://texttechnology.mcmaster.ca/pdf/vol13_-2_06.pdf

Alexander R. Galloway, The Poverty of Philosophy: Realism and Post-Fordism,
Critical Inquiry. 2013, http://cultureandcommunication.org/galloway/pdf/Galloway,%20Poverty%200f%20Philos

Edward Alcosser, James P. Phillips, Allen M. Wolk, How to Build a Working
Digital Computer. Hayden Book Company, 1968. https://archive.org/details/howtobuildaworkingdigitalcomputer.

58

59

Matthew Fuller, “It looks like you're writing a letter: Microsoft Word”, Nettime, 5
Sep 2000. https:/library.memoryoftheworld.org/b/xpDrXE_VQeeuDDpc5Rrywy TJwbzD8eatY(

Barbara P. Aichinger, DDR Memory Errors Caused by Row Hammer. 2015
www.memcon.com/pdfs/proceedings2015/SAT 104 _FuturePlus.pdf

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. 2015 http://palms.ee.princeton.edu/system/files/SF

See also: http://pad.constantvzw.org/p/observatory.guide.samequestion

Source: http://pad.constantvzw.org/p/observatory.reader

Colophon

The Guide to technogalactic software observing was compiled by Carlin Wing,
Martino Morandi, Peggy Pierrot, Anita, Christoph Haag, Michael Murtaugh,
Femke Snelting

License: Free Art License
Support:
Sources:

Constant, February 2018

60

